• Title/Summary/Keyword: North Korean cold current

Search Result 96, Processing Time 0.02 seconds

Comparison of Fish Species Composition Collected by Set Net at Hupo in Gyeong-Sang-Buk-Do, and Jangho in Gang-Won-Do, Korea (경상북도 후포와 강원도 장호에서 정치망으로 채집된 어류 종조성 비교)

  • Kang, Jung-Ha;Kim, Yi-Gyeong;Park, Jung-Youn;Kim, Jin-Koo;Ryu, Jung-Hwa;Kang, Chung-Bae;Park, Jeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.4
    • /
    • pp.424-430
    • /
    • 2014
  • Two major temperature fronts, the Subpolar (Gosung, Gang-won-do; $38^{\circ}-41^{\circ}N$) and Thermal (Jukbyun, Gyeong-sang-buk-do; $36^{\circ}-37^{\circ}N$) fronts, are found in the East Sea along the east coast of Korea. These are located roughly where the Tsushima Warm Current and North Korea Cold Current intersect. To clarify the effect of the Thermal Front, we investigated seasonal variation in fish species composition using set nets in two areas located north (Jangho, Gang-won-do) and south (Hupo, Gyeong-sang-buk-do) of Jukbyun, Gyeong-sang-buk-do, and compared the sea water temperature and salinity. We collected a total of 38 fish species in Hupo and 25 in Jangho. Trachurus japonicus was the most common species at both sites, but the subdominant species differed. At Hupo, the subdominant species were Konosirus punctatus and Diodon holocanthus, whereas Clupea pallasii and Scomber japonicus were subdominant at Jangho. Based on Froese and Pauly (2014), subtropical fishes accounted for 55% of fish in Hupo but only for 33% in Jangho. The difference in fish species composition was most obvious in May and August. According to the Korea Hydrographic and Oceanographic Administration, sea surface temperature and salinity were slightly higher at Hupo than at Jangho. Our findings suggest that the oceanographic boundary resulting from the Thermal Front near Jukbyun, Gyeong-sang-bukdo may have a major effect on the distribution of migratory fish species.

A Study on Cold Water Damage to Marine Culturing Farms at Guryongpo in the Southwestern Part of the East Sea (경북 구룡포 해역에서의 냉수 발생과 어장 피해)

  • Lee, Yong-Hwa;Shim, JeongHee;Choi, Yang-ho;Kim, Sang-Woo;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.731-737
    • /
    • 2016
  • To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southwestern part of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for Aquaculture environment operated by NIFS (National Institute of Fisheries Science) during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below $10^{\circ}C$) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days ($CWI_{2d}$) was higher than 100, mass fish mortality occurred. The four-day average CWI ($CWI_{4d}$) showed a high negative correlation with surface temperature from July-August in the Guryongpo area ($R^2=0.5$), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from $7-23^{\circ}C$, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the Guryongpo fish industry. More studies are needed to focus on this phenomenon.

Possible Formation Area of the Japan Sea Proper Water I. Subareas by the Polar Front (동해고유수의 생성가능해역 I. 극전선에 의한 해역구분)

  • 최용규;양성기
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.27-42
    • /
    • 1993
  • Based on the Results of Marine Meteorological and Oceanographical Observations during 1966∼1987 and the Ten-day Marine Report during 1970∼1989 by Japan Meteorological Agency, the possible area where the Japan Sea Proper Water (JSPW) can be formed is investigated by analyzing the distribution of water types in the Japan Sea. The Japan Sea can be divided into three subareas of Northern Cold Water(NCW), Polar Front(PF) and Tsushima Warm Current (TWC) by the Polar Front identified by a 6℃ isothermal line at the sea surface in vinter. Mean position of the Polar Front is approximately parallel to the latitude 39∼40。N. The standard deviation of the Polar Front from the mean position of about 130km width is the smallest in the region between 136。E and 138。E where the Polar Front is very stable, because the branches of the Tsushima Current are converging in this region. However, standard deviations are about 180∼250km near the Korean peninsula and the Tsugaru Strait due to greater variability of warm currents. In the NCW area north of 40∼30。N and west of 138。E, the water types of the sea surface to the loom depth are similar to those of the JSPW. This fact indicates that the surface layer of the NCW area is the possible region of the JSPW formation in winter.

  • PDF

Studies of the Plankton in the Southwestern Waters of the East (Sea of Japan)(III) (東海 西南海域의 플랑크톤(III) 동물플랑크톤 - 현존량, 종조성 및 분포)

  • 심재영;이동섭
    • 한국해양학회지
    • /
    • v.21 no.3
    • /
    • pp.146-155
    • /
    • 1986
  • Zooplankton samples of upper 50m layer in May, 1985 and of various depth intervals depending on thermal structure in October, 1985 were analyzed. Standing stock represents mean of 538inds/㎥ in spring and 267 inds/㎥ and 508inds/㎥ of whole column mean and surface layer in fall, respectively. A total of 55 and 104taxa is identified in each season and accumulated data list at least 123 species inhabiting in the study area. Copepods dominate in the zooplankton community, followed by protozoans and appendicularians in both seasons. In surface layer, distribution of subtropical species and standing stock seems to illuminate the effects of the Tsushima Current and the North Korean Cold Watermass in cold season, whereas only standing stock shows discernable variation in warm season. Concerning whole water column, depth of permanent thermocline bottom, at about 120m in fall 1985, plays significant role as a barrier to the distribution of mesopelagic cold water species. Serial sampling in October, 1985 does not reveal any perceivable diel vertical migration, which is considered to confirm the earlier suggest that owing to the lack of true abyssal species zooplankton biomass of deeper gayer is very poor, so that diel vertical migration of the East Sea is weak.

  • PDF

Inversion Phenomena of Temperature in the Southern Sea of Korea (한국 남해의 수온역전현상)

  • KIM Hee-Joon;YUG Sang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.111-116
    • /
    • 1983
  • Temperature inversions are investigated by using the oceanographic data (1965-1979) obtained in the Southern Sea of Korea. The temperature inversions in winter occur about six times more frequently than those in sumner. In the west region of the Southern Sea, the inversions are found at any depth in winter. In the east region of the Southern Sea, however, they usually appear in surface layer in winter. Such inversion phenomena in winter can be explained by surface cooling effects associated with a net heat loss at the sea surface and a southward advection of surface cold water due to north-westerly monsoon. In summer the inversion layers are usually formed below the thermocline in the west region of the Southern Sea, and in surface layer in the east region. The former results from the mixing between the Tsushima Warm Current and the Yellow Sea Bottom Cold Water, and the latter is generated by an offshore flow of cold water near coast due to southwesterly wind.

  • PDF

The Community Structure of Phytoplankton in Winter and Summer Around Wangdol-cho (동해 왕돌초 주변 해역의 동계와 하계 식물플랑크톤 군집 분포)

  • Shim, Jeong-Min;Jin, Hyun-Gook;Sung, Ki-Tack;Hwang, Jae-Dong;Yun, Suk-Hyun;Lee, Yong-Hwa;Kim, Young-Suk;Kwon, Ki-Young
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1403-1411
    • /
    • 2008
  • Wangdol-cho, located 23 km offshore of Hupo in southwest of East Sea, is underwater rock floor, called to Wangdol-Am or Wangdol-Jam and has three tops as Mat-Jam, Middle-Jam and Set-Jam. The composition, abundance, diversity and community structure were investigated in winter and summer in 2002 around Wangdol-cho. The temperature around the Northwest and Southeast part of Wangdol-cho was influenced by the North Korea Cold Current (NKCC) and East Korea Warm Current (EKWC), respectively. Nutrient and chlorophyll-a concentration were higher at the top of Wangdol-cho than other area. A total of 41 genera and 78 species of phytoplankton were identified. The average cell abundance of phytoplankton in winter and summer were $286{\times}10^3\;cells/m^3,\;432{\times}10^3\;cells/m^3$ respectively. The largest community was Bacillariophyta containing 52 taxa. The dominant species were Lauderia anulata and Coscinodiscus spp. which preferred cold water in winter. In contrast, warm water species such as Rhizosolenia stolterfothii and Ceratium spp. were dominant in summer. The average species diversity index of phytoplankton in winter was higher than that in summer. According to dominant species and standing crops, phytoplankton community resulted in a clear separation. One group was western area, which showed low density, and the other was eastern area, which showed the higher density. The abundance and species composition of phytoplankton. were affected by topological characteristics around Wangdol-cho.

Temporal and spatial Analysis of Sea Surface Temperature and Thermal Fronts in the Korean Seas by Satellite data

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.696-700
    • /
    • 2004
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of harmonic analysis, distributions of the mean SST were $10~25^{\circ}C,$ and generally SST decreased as latitude increased. SST increased in the order as following; the South Sea $(20\~23^{\circ}C),$ the East Sea $(17\~19^{\circ}C)$, and the West $Sea(13\~16^{\circ}C).$ Annual amplitudes and phases were $4\~11^{\circ}C,\;210\~240^{\circ}$ and high values were shown as following; the West Sea $(A1,\;9\~11^{\circ}C),$ the Northern East Sea $(A5,\;8\~9^{\circ}C),$ the Southern East Sea $(A4,\;6\~8^{\circ}C),$ the South Sea $(A3,\;6\~7^{\circ}C),$ the East China Sea $(A2,\;4\~7^{\circ}C)$ and phases; $A3\;(238\~242^{\circ}),\;A4\;(235\~240^{\circ}),\;A5\;(225\~235^{\circ}),\;Al\;(220\~230^{\circ}),\;A2\;(210\~235^{\circ}),$ respectively, Both of them were related inversely except the area A2, therefore the rest areas were affected by seasonal variations. TF were detected by Soble Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) based on the Cold Water Mass (low SST and salinity Subartic Water), resulting from the North Korea Cold Current (NKCC) and the East Sea Proper Cold Water in the middle and low layer, and the Warm Water Mass (high SST and salinity Subtropical Water), resulting from the Tsushima Warm Current (TWC) in area A4 and 5, the Kuroshio Front (KF) based on the Kuroshio Current (KC) and shelf waters in the East China Sea (ESC) in A2, and the South Sea Coastal Front (SSCF) based on the South Sea Coastal Water (SSCW) and TWC in A3. Also, the Tidal Front was weakly appeared in AI. TF located in steep slope of submarine topography. Annual amplitudes and phases were bounded in the same place, and these results should be considered to influence of seasonal variations.

  • PDF

An Oceanic Current Map of the East Sea for Science Textbooks Based on Scientific Knowledge Acquired from Oceanic Measurements (해양관측을 통해 획득된 과학적 지식에 기반한 과학교과서 동해 해류도)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Byun, Do-Seong;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.234-265
    • /
    • 2013
  • Oceanic current maps in the secondary school science and earth science textbooks have played an important role in piquing students's inquisitiveness and interests in the ocean. Such maps can provide students with important opportunities to learn about oceanic currents relevant to abrupt climate change and global energy balance issues. Nevertheless, serious and diverse errors in these secondary school oceanic current maps have been discovered upon comparison with up-to-date scientific knowledge concerning oceanic currents. This study presents the fundamental methods and strategies for constructing such maps error-free, through the unification of the diverse current maps currently in the textbooks. In order to do so, we analyzed the maps found in 27 different textbooks and compared them with other up-to-date maps found in scientific journals, and developed a mapping technique for extracting digitalized quantitative information on warm and cold currents in the East Sea. We devised analysis items for the current visualization in relation to the branching features of the Tsushima Warm Current (TWC) in the Korea Strait. These analysis items include: its nearshore and offshore branches, the northern limit and distance from the coast of the East Korea Warm Current, outflow features of the TWC near the Tsugaru and Soya Straits and their returning currents, and flow patterns of the Liman Cold Current and the North Korea Cold Current. The first draft of the current map was constructed based upon the scientific knowledge and input of oceanographers based on oceanic in-situ measurements, and was corrected with the help of a questionnaire survey to the members of an oceanographic society. In addition, diverse comments have been collected from a special session of the 2013 spring meeting of the Korean Oceanographic Society to assist in the construction of an accurate current map of the East Sea which has been corrected repeatedly through in-depth discussions with oceanographers. Finally, we have obtained constructive comments and evaluations of the interim version of the current map from several well-known ocean current experts and incorporated their input to complete the map's final version. To avoid errors in the production of oceanic current maps in future textbooks, we provide the geolocation information (latitude and longitude) of the currents by digitalizing the map. This study is expected to be the first step towards the completion of an oceanographic current map suitable for secondary school textbooks, and to encourage oceanographers to take more interest in oceanic education.

Distribution of indicator species of copepods and chaetognaths in the middle East Sea of Korea and their relationships to the characteristics of water masses (한국 동해 중부 해역의 지표성 요각류 및 모악류의 분포와 수괴 특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.203-213
    • /
    • 1991
  • Zooplankton samples were collected vertically from different layers with a closing net at 14 stations in the middle East Sea of Korea in February, August and September to study distribution of biological indicators for analysis of water masses. Horizontal and vertical distributions of important species of copepods and chaetognathas known as indicator species were closely related to distributions of different water masses and oceanic fronts. Pleuromamma gracilis, Calanus tenuicornis, Sagitta enflata and Sagitta minima were found to be reliable indicator species to determine warm water mass with warm core, and Calanus cristatus, Calanus tonsus and Sagitta elegans could be used as cold water species for evaluating the movement of cold current from North Korea, and Gaetanus armiger was deep sea water species. Therefore, it was found that North Korean Cold Current down to the south along the coast appeared to be significant in the surface around Chumunjin area, and from here towards the south the cold water containing S. elegans submerged under warm water with S. enflata which were about $2{\~}4^{\circ}C$ higher than that of the vicinity and reappeared near Chukpeon area in surface layer. In the layer between loom and 300m depths, distribution of Pleuromamma gracilis and Sagitta bedoti indicated that warm water mass and front zone influenced by the different water systems were formed in northwestern area off Ulreung-do. In $300{\~}500m$ layer, the proper cold water could be estimated to be present in the northwestern area off Ulreung-do throughout the survey period by the high abundance of Gaetanus armiger. In August, distributions of S. bedoti, S. enflata and S. minima were valuable index to find oceanic fronts and warm core.

  • PDF

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea- (한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성-)

  • YANG Han-Soeb;KIM Seong-Soo;KANG Chang-Geun;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1991
  • The vertical distribution and chemical characteristics of water masses were measured along two south-north transects in the polar front region of the central Korean East Sea. In February, a thermocline was present at depth between 50m and loom at the southern sites of a landward A-transect, and its depth was gradually deepened northward. At an outside B-transect, a thermocline was observed at significantly deep depth of 300m to 400m at two northern stations(Stn. 10 and 11), though the depth of the southward stations was nearly identical to that at the northward stations on a A-transect. In September, there were vertically more various water masses, i.e. the Tsushima Warm surface water(TWSW) or more than $20^{\circ}C$, the Tsushima Middle water(TMW) with a range of $12{\~}17^{\circ}C$, the North Korea Cold Water(NKCW) with $1{\~}7^{\circ}C$ temperature, the Japan Sea Proper Water(JSPW) of less than $1^{\circ}C$, and the mixed water. The North Korea Cold Water could be distinguishable from the other waters, especially from the mixed water of the Tsushima Middle Water and the Japan Sea Proper Water by the pattern of $T-O_2$ diagram. For instance, the North Korea Cold Water had higher oxygen by $1{\~}2ml/l$ than those in the mixed water, although both the two water masses ranged $1{\~}7^{\circ}C$ in water temperature. AOU value was the highest in the JSPW and the lowest in the TWSW. Also, AOU indicated a nearly linear and negative correlation with water temperature. However, AOU data for two masses, the NKCW and the TMW, in September departed remarkably from a regression line. Moreover, the ratio of $$\Delta P/\Delta AOU)$ in September was about $0.45{\mu}g-at/ml$ and higher than the value observed in the open sea. This high value could be elucidated by two factors; intrusion of the NKCW with high oxygen and molecular diffusion of dissolved oxygen from the surface into the lower layer. AOU would be a useful tracer for water masses in the polar front area of the Korean East Sea.

  • PDF