• Title/Summary/Keyword: Normality Test

Search Result 289, Processing Time 0.017 seconds

Test of Normality Based on the Transformed Lorenz Curve

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.901-908
    • /
    • 1999
  • Using the Transformed Lorenz curve which is introduced by Cho et al.(1999) we propose the test statistic for testing of normality that is very important test in statistical analysis and compare the proposed test statistic with the Shapiro and Wilk's W test statistic in terms of the power of test through by Monte Carlo method.

  • PDF

The Limit Distribution of an Invariant Test Statistic for Multivariate Normality

  • Kim Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.71-86
    • /
    • 2005
  • Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is representable as the supremum over an index set of the integral of a suitable Gaussian process.

The Limit Distribution and Power of a Test for Bivariate Normality

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.187-196
    • /
    • 2002
  • Testing for normality has always been a center of practical and theoretical interest in statistical research. In this paper a test statistic for bivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is represented as the supremum over an index set of the integral of a suitable Gaussian Process. We also simulate the null distribution of the statistic and give some critical values of the distribution and power results.

Tests Based on Skewness and Kurtosis for Multivariate Normality

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.361-375
    • /
    • 2015
  • A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.

Asymptotic Distribution of the LM Test Statistic for the Nested Error Component Regression Model

  • Jung, Byoung-Cheol;Myoungshic Jhun;Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.489-501
    • /
    • 1999
  • In this paper, we consider the panel data regression model in which the disturbances have nested error component. We derive a Lagrange Multiplier(LM) test which is jointly testing for the presence of random individual effects and nested effects under the normality assumption of the disturbances. This test extends the earlier work of Breusch and Pagan(1980) and Baltagi and Li(1991). Further, it is shown that this LM test has the same asymptotic distribution without normality assumption of the disturbances.

  • PDF

The Rao-Robson Chi-Squared Test for Multivariate Structure

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1013-1021
    • /
    • 2003
  • Huffer and Park (2002) proposed a chi-squared test for multivariate structure. Their test detects the deviation of data from mutual independence or multivariate normality. We will compute the Rao-Robson chi-squared version of the test, which is easy to apply in practice since it has a limiting chi-squared distribution. We will provide a self-contained argument that it has a limiting chi-squared distribution. We study the accuracy in finite samples of the limiting distribution. We finally compare the power of our test with those of other popular normality tests in an application to a real data.

  • PDF

A Simple Chi-squared Test of Multivariate Normality Based on the Spherical Data

  • Park, Cheolyong
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.117-126
    • /
    • 2001
  • We provide a simple chi-squared test of multivariate normality based on rectangular cells on the spherical data. This test is simple since it is a direct extension of the univariate chi-squared test to multivariate case and the expected cell counts are easily computed. We derive the limiting distribution of the chi-squared statistic via the conditional limit theorems. We study the accuracy in finite samples of the limiting distribution and then compare the poser of our test with those of other popular tests in an application to a real data.

  • PDF

Further Applications of Johnson's SU-normal Distribution to Various Regression Models

  • Choi, Pilsun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.161-171
    • /
    • 2008
  • This study discusses Johnson's $S_U$-normal distribution capturing a wide range of non-normality in various regression models. We provide the likelihood inference using Johnson's $S_U$-normal distribution, and propose a likelihood ratio (LR) test for normality. We also apply the $S_U$-normal distribution to the binary and censored regression models. Monte Carlo simulations are used to show that the LR test using the $S_U$-normal distribution can be served as a model specification test for normal error distribution, and that the $S_U$-normal maximum likelihood (ML) estimators tend to yield more reliable marginal effect estimates in the binary and censored model when the error distributions are non-normal.

Goodness of Fit Test of Normality Based on Kullback-Leibler Information

  • Kim, Jong-Tae;Lee, Woo-Dong;Ko, Jung-Hwan;Yoon, Yong-Hwa;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.909-918
    • /
    • 1999
  • Arizono and Ohta(1989) studied goodness of fit test of normality using the entropy estimator proposed by Vasicek (1976) Recently van Es(1992) and Correa(1995) proposed an estimator of entropy. In this paper we propose goodness of fit test statistics for normality based on Vasicek ven Es and Correa. And we compare the power of the proposed test statistics with Kolmogorov-Smirnov Kuiper Cramer von Mises Watson Anderson-Darling and Finkelstein and Schefer statistics.

  • PDF

A modified test for multivariate normality using second-power skewness and kurtosis

  • Namhyun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.423-435
    • /
    • 2023
  • The Jarque and Bera (1980) statistic is one of the well known statistics to test univariate normality. It is based on the sample skewness and kurtosis which are the sample standardized third and fourth moments. Desgagné and de Micheaux (2018) proposed an alternative form of the Jarque-Bera statistic based on the sample second power skewness and kurtosis. In this paper, we generalize the statistic to a multivariate version by considering some data driven directions. They are directions given by the normalized standardized scaled residuals. The statistic is a modified multivariate version of Kim (2021), where the statistic is generalized using an empirical standardization of the scaled residuals of data. A simulation study reveals that the proposed statistic shows better power when the dimension of data is big.