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Abstract
A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical

standardization using the scaled residuals of the observations. First, we consider the statistics that take the
skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics
converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or
the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation;
consequently, the null distributions of the statistics from the transformed ones are quite well approximated to
asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis
have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.

Keywords: Goodness of fit tests, multivariate normality, skewness, kurtosis, scaled residuals,
empirical standardization, power comparison

1. Introduction

Classical multivariate analysis techniques require the assumption of multivariate normality; conse-
quently, there are numerous test procedures to assess the assumption in the literature. For a gen-
eral review, some references are Henze (2002), Henze and Zirkler (1990), Srivastava and Mudholkar
(2003), and Thode (2002, Ch.9). For comparative studies in power, we refer to Farrell et al. (2007),
Horswell and Looney (1992), Mecklin and Mundfrom (2005), and Romeu and Ozturk (1993).

Most multivariate techniques are often generalizations of univariate normality tests. W test by
Shapiro and Wilk (1965) and moment tests based on skewness and kurtosis are some of the most
popular tests for univariate normality (Pearson et al., 1977). Shapiro and Wilk’s W test and the
approximate tests to that (De Wet and Venter, 1972; Shapiro and Francia, 1972) have been generalized
to multivariate cases by Fattorini (1986), Kim (2004a, 2005), Kim and Bickel (2003), Malkovich and
Afifi (1973), Mudholkar et al. (1995), Royston (1983), Srivastava and Hui (1987), and Villasenor
Alva and González Estrada (2009). As for skewness and kurtosis approaches, Mardia (1970, 1974)’s
procedures are the most frequently used tests for multivariate normality. Kim (2004b), and Malkovich
and Afifi (1973) generalized univariate moments to multivariate ones based on linear combinations of
variates. Srivastava (1984) used principal components.

Numerous different testing procedures have been proposed in the literature to test multinormality;
however, research has indicated no single test to be the most powerful for all situations. The Henze
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and Zirkler (1990) test is usually recommended as a formal goodness of fit test for multinormality
since the invariance and consistency are proven theoretically and it has relatively good power across
a wide range of alternatives (Farrell et al., 2007; Mecklin and Mundfrom, 2005). However some
supplementary or less formal procedures (such as Mardia’s skewness and kurtosis measures or some
graphical procedures) should be followed up to help diagnose possible deviation from normality.

Mardia’s procedures are among the most commonly used tests for multinormality; however, Bar-
inghaus and Henze (1992), and Henze (1994) showed that Mardia’s skewness and kurtosis are incon-
sistent against certain alternatives. Consequently, Mardia’s procedures may have low power against
some alternatives. It could also happen for other procedures for other procedures based on skewness
or kurtosis. However, skewness and kurtosis can provide direct measure of departure from normality
with strong points over other procedures.

In this paper, we propose multivariate skewness and kurtosis statistics based on an empirical stan-
dardization using the scaled residuals of the observations. Villasenor Alva and González Estrada
(2009) used this idea to generalize Shapiro and Wilk’s W test that is closely related to Srivastava
and Hui (1987)’s principal component approach. Section 2 presents the proposed test statistics for
multivariate normality with the simulated critical values and p-values using asymptotic distributions.
Section 3 contains a real data example and simulation study to compare the power performance of the
statistics. Section 4 ends the paper with the concluding remarks.

2. Test Statistics Based on Skewness and Kurtosis

Let X1,X2, . . . ,Xn be p-dimensional independent and identically distributed (i.i.d.) random vectors,
and let Np(µ,Σ) be the p-variate multivariate normal distribution with mean vector µ and covariance
matrix Σ. For the univariate normal distribution with mean µ and variance σ2, we will use N(µ, σ2)
omitting the index.

We want to test the null hypothesis

H0 : X1, . . . ,Xn is a sample from Np(µ,Σ) for some µ and Σ.

First, we transform X1,X2, . . . ,Xn as

Zi = S∗
′ (

Xi − X̄
)
, i = 1, . . . , n, (2.1)

where ‘ ′ ’ denotes a transpose, X̄ is the sample mean vector, X̄ = n−1 ∑n
j=1 X j, S is the sample

covariance matrix, S = n−1 ∑n
j=1(X j − X̄)(X j − X̄)

′
, and S∗ is defined by S∗′SS∗ = I. We call Zi’s the

scaled residuals, and it is well known Z1, . . . ,Zn follow Np(0, I) asymptotically if X1,X2, . . . ,Xn is a
sample from Np(µ,Σ), where 0 is the null vector of order p and I is the identity matrix of order p× p.
The components of Zi, denoted by (Z1i,Z2i, . . . ,Zpi), are approximately independent standard normal
N(0, 1) under the null hypothesis.

Therefore we can think of test statistics that consider the skewness or the kurtosis of each coordi-
nate (Zk1,Zk2, . . . ,Zkn), k = 1, . . . , p. As for skewness, it is defined by

√
b1(k) =

√
n
∑n

j=1

(
Zk j − Z̄k

)3

[∑n
j=1

(
Zk j − Z̄k

)2
] 3

2

=
1
n

n∑
j=1

Z3
k j, (2.2)



Tests for Multivariate Normality 363

and it is usually a two-sided test. Its square

b1(k) =
n
[∑n

j=1

(
Zk j − Z̄k

)3
]2

[∑n
j=1

(
Zk j − Z̄k

)2
]3 =

1
n

n∑
j=1

Z3
k j

2

(2.3)

is a one-sided test. The second equality in (2.2) or (2.3) follows from that each coordinate (Zk1,Zk2,
. . . , Zkn), k = 1, . . . , p has mean 0 and variance 1.

To test the null hypothesis, we can think of the test statistic

B1 = max
1≤k≤p

b1(k), (2.4)

since large value of b1(k) indicates a departure from normality. The statistic in (2.4) is closely related
to Srivastava (1984)’s. Malkovich and Afifi (1973) generalized the univariate skewness and kurtosis
to test multivariate normality using Roy’s union-intersection principle (Roy, 1953), which is based
on the fact that c′X follows a univariate normal for all c, c , 0, if X follows a multivariate normal.
They investigated the skewness or the kurtosis of all the possible linear combinations that reduce to
normal under the null hypothesis and tried to find a direction that gives furthest away from normal.
Malkovich and Afifi (1973)’s multivariate skewness is as follows.

b1,M = max
c, c,0

b1(c) = max
c, ||c||=1

1
n2

 n∑
j=1

(
c′Z j

)3
2

, (2.5)

where
√

b1(c) is the univariate skewness of c′X1, . . . , c′Xn as in (2.2) by substituting y j = c′X j

into Zk j, b1(c) is its square likewise, and Z j is the scaled residual in (2.1). The second equality
in (2.5) comes from the affine invariance with respect to addition of vectors and multiplication of
nonsingular matrices (Kim, 2004b). However the statistic in (2.5) is hard to compute, especially when
the dimension p becomes large, practically when the dimension is p > 2 (Horswell and Looney,
1992). Hence Kim (2004b) proposed an approximation to Malkovich and Afifi’s statistic by selecting
some directions that might achieve the maximum in (2.5) asymptotically. The statistic is included
for comparison in Section 3. However, B1 in (2.4) selects the vectors c as the unit vectors in each
coordinate such that c = (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Under the null hypothesis of normality,
√

b1(k) is asymptotically normal with mean 0 and variance
6/n (Kendall and Stuart, 1977). Specifically,

√
b1(k)

[
(n + 1)(n + 3)

6(n − 2)

] 1
2 d→ N(0, 1). (2.6)

Therefore the limit distribution of B1 in (2.4) becomes

B∗1 :=
(n + 1)(n + 3)

6(n − 2)
B1

d→ max
1≤k≤p

Vk, (2.7)

where V1, . . . ,Vp follow i.i.d. χ2
1, chi-square distribution with 1 degree of freedom, and we have

lim
n→∞

P
(
B∗1 ≤ x

)
= (P(V1 ≤ x))p.
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However, the sample size must be somewhat large so that the normal approximation in (2.6) can be
used. According to D’Agostino (1986), it appears to be valid for n ≥ 150.

D’Agostino (1970) presented a transformation of the null distribution of
√

b1(k) to normality using
a Johnson’s unbounded S U curve. For each

√
b1(k), we compute

Y∗k =
√

b1(k)
[
(n + 1)(n + 3)

6(n − 2)

] 1
2

,

β2 =
3
(
n2 + 27n − 70

)
(n + 1)(n + 3)

(n − 2)(n + 5)(n + 7)(n + 9)
,

ω2 =
√

2(β2 − 1) − 1,

δ =
1√

logω
,

α =

√
2

ω2 − 1
,

and

T ∗k := T ∗k
( √

b1(k)
)
= δ log

Y∗k
α
+

√(
Y∗k
α

)2

+ 1

 . (2.8)

The constant β2 in the above transformation is based on the fourth standardized moment of the dis-
tribution of the skewness. The T ∗k ’s follow approximately a standard normal N(0, 1). It is applicable
even for small sample sizes, n ≥ 8. We propose the following statistics using T ∗k in (2.8)

S 1 = max
1≤k≤p

(
T ∗k

)2
, S 2 =

p∑
k=1

(
T ∗k

)2

as test statistics to test multivariate normality, then we have

S 1
d→ max

1≤k≤p
Vk, and S 2

d→ χ2
p.

Likewise B1 in (2.4), large values of S 1 or S 2 will indicate non-normality.
For kurtosis, it is obtained by

b2(k) =
n
∑n

j=1

(
Zk j − Z̄k

)4[∑n
j=1

(
Zk j − Z̄k

)2
]2 =

1
n

n∑
j=1

Z4
k j, (2.9)

and the kurtosis is asymptotically normal with mean 3 and variance 24/n under normality. The fol-
lowing normal approximation is often used

Y∗∗k :=

√
(n + 1)2(n + 3)(n + 5)

24n(n − 2)(n − 3)

(
b2(k) − 3(n − 1)

(n + 1)

)
d→ N(0, 1) (2.10)
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using the mean and variance of the kurtosis. A test statistic for multivariate normality could be

B2 = max
1≤k≤p

(
b2(k) − 3(n − 1)

(n + 1)

)2

,

and we have

B∗∗2 :=
(n + 1)2(n + 3)(n + 5)

24n(n − 2)(n − 3)
B2

d→ max
1≤k≤p

Vk. (2.11)

The normal approximation for the kurtosis in (2.10) is slow and the sample size must be extremely
large so that the approximation is valid. D’Agostino (1986) recommended it not be used because it
should be over n = 1000.

Likewise in the skewness, Malkovich and Afifi (1973)’s multivariate kurtosis is defined by

b2
2,M = max

c,c,0
[b2(c) − 3]2 = max

c, ||c||=1

1
n

n∑
j=1

(
c′Z j

)4 − 3

2

(2.12)

with b2(c) the univariate kurtosis of c′X1, . . . , c′Xn as in (2.9) plugging y j = c′X j into Zk j. The
approximate statistic is given in Kim (2004b).

Anscombe and Glynn (1983) showed a normal approximation for the kurtosis. Compute
√
β1, the

third standardized moment of kurtosis,

√
β1 =

6(n2 − 5n + 2)
(n + 7)(n + 9)

√
6(n + 3)(n + 5)
n(n − 3)(n − 2)

,

and compute

A = 6 +
8
√
β1

 2
√
β1
+

√
1 +

4
β1

 .
Finally

T ∗∗k := T ∗∗k (b2(k)) =

1 − 2
9A
−

 1 − (2/A)
1 + Y∗∗k

√
2/(A − 4)


1
3
 1
√

2/(9A)
(2.13)

follows approximately a standard normal N(0, 1). The Y∗∗k is defined in (2.10), and it is the standard-
ized value of the kurtosis. The proposed statistic using T ∗∗k in (2.13) could be

K1 = max
1≤k≤p

(T ∗∗k )2, K2 =

p∑
k=1

(T ∗∗k )2

likewise in the skewness. They have

K1
d→ max

1≤k≤p
Vk, and K2

d→ χ2
p.
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Table 1: Simulated critical values and p-values using asymptotic distribution for p = 2, α = 0.05

Statistic Values n = 10 n = 20 n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = ∞
B1 Critical value 1.811 1.201 0.882 0.688 0.563 0.289 0.203 0.151

B∗1
Critical value 5.396 5.371 5.373 5.324 5.284 5.107 5.286 5.173 5.002

p-value 0.040 0.041 0.040 0.042 0.043 0.047 0.043 0.045 0.050

S 1
Critical value 5.317 5.057 5.010 4.855 5.044 5.007 4.978 5.095 5.002

p-value 0.042 0.048 0.050 0.054 0.049 0.050 0.051 0.047 0.050

S 2
Critical value 5.908 5.983 6.175 5.809 5.933 5.940 5.910 5.927 5.991

p-value 0.052 0.050 0.046 0.055 0.051 0.051 0.052 0.052 0.050

B2 Critical value 3.687 3.628 3.124 2.805 2.239 1.110 0.836 0.599

B∗∗2
Critical value 6.472 6.263 6.370 6.761 6.270 5.368 5.770 5.382 5.002

p-value 0.022 0.025 0.023 0.019 0.024 0.041 0.032 0.040 0.050

K1
Critical value 4.479 5.027 4.913 4.917 5.219 5.059 5.080 5.238 5.002

p-value 0.067 0.049 0.053 0.052 0.044 0.048 0.048 0.044 0.050

K2
Critical value 5.406 5.976 5.893 6.074 6.073 6.359 6.321 6.075 5.991

p-value 0.067 0.050 0.053 0.048 0.048 0.042 0.042 0.048 0.050

C1
Critical value 5.284 5.658 5.997 6.069 6.261 6.317 6.352 6.171 6.205

p-value 0.083 0.068 0.056 0.054 0.048 0.047 0.046 0.051 0.050

C2
Critical value 10.627 10.581 10.172 10.200 10.441 10.368 10.168 9.849 9.488

p-value 0.031 0.032 0.038 0.037 0.034 0.035 0.038 0.043 0.050

Srivastava and Hui (1987) computed Shapiro and Wilk’s W statistics of the principal components,
transformed them to normality, applied the transformation −2 ln ϕ(·) for them with ϕ the density of a
standard normal and took a summation for asymptotic distribution χ2

2p. When we apply −2 ln ϕ(·) to
the transformed skewness T ∗k or the transformed kurtosis T ∗∗k and make the statistic −2

∑p
k=1 ln ϕ(T ∗k )

or −2
∑p

k=1 ln ϕ(T ∗∗k ), these statistics should not be used due to their extremely poor power.
Considerable attention has been paid to the omnibus tests that combine information from skewness

and kurtosis. D’Agostino and Pearson (1973) proposed the statistic(
T ∗k

( √
b1(k)

))2
+

(
T ∗∗k (b2(k))

)2

when k = 1 as an omnibus statistic for testing univariate normality and viewed it as χ2
2 although the

two although two variables are not independent. D’Agostino and Pearson (1974), D’Agostino (1986),
and Bowman and Shenton (1986) mentioned that they are uncorrelated and nearly independent, and
χ2

2 approximation for the statistic is no problem for n ≥ 100. Bowman and Shenton (1975, 1986) also
gave the same format of the statistic; therefore, we may propose the following statistics

C1 = max
1≤k≤p

[(
T ∗k

)2
,
(
T ∗∗k

)2
]
, C2 =

p∑
k=1

(
T ∗k

)2
+

p∑
k=1

(
T ∗∗k

)2

as p-dimensional omnibus test statistics, having the null distributions approximately max1≤k≤2p Vk,
χ2

2p respectively, with V1, . . . ,V2p i.i.d. χ2
1.

A simulation study was performed to study the null distributions of the proposed statistics. For
each combination of dimensions p = 2, 5 and different sample sizes n = 10, 20, 30, 40, 50, 100, 150, 200,
and for p = 10, n = 30, 40, 50, 100, 150, 200, 250, 300, we generate N = 5,000 random samples and
calculate the statistics. Random samples are generated from independent Np(0, I), since the distribu-
tion of the statistics do not depend on unknown parameters µ,Σ.

In Table 1–6, the simulated critical values and p-values for each statistic are given for α= 0.05, 0.10.
The simulated quantile values kα are given in the tables. The p-values are obtained using the asymp-
totic distribution max1≤k≤p Vk for B1, B2, S 1,K1, max1≤k≤2p Vk for C1, χ2

p for S 2,K2, and χ2
2p for C2.
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Table 2: Simulated critical values and p-values using asymptotic distribution for p = 2, α = 0.10

Statistic Values n = 10 n = 20 n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = ∞
B1 Critical value 1.334 0.867 0.625 0.493 0.418 0.216 0.151 0.115

B∗1
Critical value 3.975 3.876 3.808 3.813 3.923 3.824 3.919 3.938 3.798

p-value 0.090 0.096 0.099 0.099 0.093 0.099 0.093 0.092 0.100

S 1
Critical value 3.883 3.843 3.851 3.814 3.790 3.839 3.850 3.866 3.798

p-value 0.095 0.097 0.097 0.099 0.100 0.098 0.097 0.096 0.100

S 2
Critical value 4.521 4.529 4.645 4.572 4.613 4.562 4.691 4.537 4.605

p-value 0.104 0.104 0.098 0.102 0.100 0.102 0.096 0.103 0.100

B2 Critical value 2.150 1.957 1.736 1.556 1.224 0.712 0.507 0.402

B∗∗2
Critical value 3.775 3.378 3.54 3.749 3.429 3.443 3.498 3.608 3.798

p-value 0.101 0.128 0.116 0.103 0.124 0.123 0.119 0.112 0.100

K1
Critical value 3.506 3.785 3.823 3.790 3.907 3.844 3.874 3.934 3.798

p-value 0.119 0.101 0.099 0.100 0.094 0.097 0.096 0.092 0.100

K2
Critical value 4.228 4.562 4.511 4.713 4.615 4.727 4.825 4.602 4.605

p-value 0.121 0.102 0.105 0.095 0.100 0.094 0.090 0.100 0.100

C1
Critical value 4.184 4.456 4.691 4.765 5.030 5.007 5.060 4.881 4.956

p-value 0.154 0.132 0.116 0.111 0.096 0.097 0.094 0.104 0.100

C2
Critical value 7.934 7.886 7.936 7.797 8.290 8.073 8.092 7.817 7.779

p-value 0.094 0.096 0.094 0.099 0.082 0.089 0.088 0.099 0.100

Table 3: Simulated critical values and p-values using asymptotic distribution for p = 5, α = 0.05

Statistic Values n = 10 n = 20 n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = ∞
B1 Critical value 2.530 1.702 1.222 0.995 0.788 0.406 0.267 0.194

B∗1
Critical value 7.538 7.614 7.442 7.691 7.397 7.180 6.936 6.677 6.599

p-value 0.030 0.029 0.031 0.027 0.032 0.036 0.042 0.048 0.050

S 1
Critical value 6.642 6.707 6.634 6.326 6.813 6.631 6.520 6.464 6.599

p-value 0.049 0.047 0.049 0.058 0.044 0.049 0.052 0.054 0.050

S 2
Critical value 11.278 10.910 11.255 11.245 11.065 11.141 11.228 11.118 11.070

p-value 0.046 0.053 0.047 0.047 0.050 0.049 0.047 0.049 0.050

B2 critical value 6.545 6.805 5.514 4.642 4.025 2.198 1.306 0.970

B∗∗2
Critical value 11.491 11.748 11.244 11.187 11.273 10.628 9.019 8.713 6.599

p-value 0.003 0.003 0.004 0.004 0.004 0.006 0.013 0.016 0.050

K1
Critical value 5.805 6.422 6.689 6.958 6.871 6.991 7.179 7.252 6.599

p-value 0.077 0.055 0.048 0.041 0.043 0.040 0.036 0.035 0.050

K2
Critical value 10.033 10.552 11.096 11.483 11.343 11.550 11.616 11.600 11.070

p-value 0.074 0.061 0.050 0.043 0.045 0.041 0.040 0.041 0.050

C1
Critical value 6.783 7.279 7.495 7.710 7.830 8.063 8.134 8.236 7.838

p-value 0.088 0.068 0.060 0.054 0.050 0.044 0.043 0.040 0.050

C2
Critical value 19.892 20.087 20.001 19.697 19.478 19.056 19.539 18.757 18.307

p-value 0.030 0.028 0.029 0.032 0.035 0.040 0.034 0.043 0.050

They are P(max1≤k≤p Vk ≥ kα), P(max1≤k≤2p Vk ≥ kα), P(χ2
p ≥ kα), or P(χ2

2p ≥ kα) for each case. As
for B1, B2, the statistics B∗1 in (2.7), B∗∗2 in (2.11) are the ones where suitable constants depending on
n are multiplied with corresponding asymptotic distributions. For skewness, the p-values are about
right even for B1 when p = 2, however they become different from the given significance level α
when p = 5, 10. Regarding S 1, S 2, the null distributions are well approximated by their asymptotic
distributions max1≤k≤p Vk, χ2

p, respectively even for small sample sizes. As for kurtosis, the p-values
for B2 show a considerable difference from the given level and are significantly worse for p = 5, 10.
The null distribution of B2 is extremely positively skewed, and asymptotic distribution should not
be used. For K1,K2, and C1,C2, the sample size n should be moderately large to provide the right
significance level for p = 2, 5, and they are conservative for p = 10. The asymptotic distributions
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Table 4: Simulated critical values and p-values using asymptotic distribution for p = 5, α = 0.10

Statistic Values n = 10 n = 20 n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = ∞
B1 Critical value 1.956 1.336 0.948 0.760 0.612 0.313 0.215 0.160

B∗1
Critical value 5.828 5.974 5.773 5.874 5.744 5.540 5.593 5.499 5.339

p-value 0.076 0.070 0.079 0.075 0.080 0.090 0.087 0.092 0.100

S 1
Critical value 5.468 5.380 5.277 5.189 5.364 5.280 5.397 5.351 5.339

p-value 0.093 0.098 0.103 0.109 0.099 0.103 0.097 0.099 0.100

S 2
Critical value 9.447 9.261 9.425 9.407 9.181 9.301 9.389 9.295 9.236

p-value 0.092 0.099 0.093 0.094 0.102 0.098 0.095 0.098 0.100

B2 Critical value 4.210 4.340 3.293 2.984 2.639 1.333 0.867 0.671

B∗∗2
Critical value 7.391 7.492 6.714 7.191 7.392 6.446 5.984 6.029 5.339

p-value 0.032 0.031 0.047 0.036 0.032 0.054 0.070 0.068 0.100

K1
Critical value 4.731 5.251 5.331 5.648 5.440 5.587 5.602 5.542 5.339

p-value 0.140 0.105 0.100 0.084 0.095 0.087 0.087 0.089 0.100

K2
Critical value 8.525 8.767 9.255 9.444 9.337 9.635 9.576 9.575 9.236

p-value 0.130 0.119 0.099 0.093 0.096 0.086 0.088 0.088 0.100

C1
Critical value 5.755 6.009 6.249 6.374 6.539 6.707 6.650 6.833 6.551

p-value 0.153 0.134 0.118 0.110 0.101 0.092 0.095 0.086 0.100

C2
Critical value 16.604 16.944 16.863 16.731 16.854 16.285 16.541 16.244 15.987

p-value 0.084 0.076 0.077 0.081 0.078 0.092 0.085 0.093 0.100

Table 5: Simulated critical values and p-values using asymptotic distribution for p = 10, α = 0.05

Statistic values n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = ∞
B1 Critical value 1.523 1.177 0.964 0.492 0.326 0.246 0.192 0.160

B∗1
Critical value 9.274 9.105 9.044 8.696 8.476 8.443 8.204 8.136 7.838

p-value 0.023 0.025 0.026 0.031 0.035 0.036 0.041 0.043 0.050

S 1
Critical value 7.823 7.826 7.732 7.968 8.056 7.814 7.726 7.720 7.838

p-value 0.050 0.050 0.053 0.047 0.044 0.051 0.053 0.053 0.050

S 2
Critical value 18.405 18.496 17.878 17.981 18.421 18.230 18.455 18.496 18.307

p-value 0.049 0.047 0.057 0.055 0.048 0.051 0.048 0.047 0.050

B2 Critical value 8.378 7.063 5.959 3.005 1.926 1.331 1.077 0.843

B∗∗2
Critical value 17.084 17.022 16.689 14.533 13.299 11.954 11.906 11.073 7.838

p-value 0.000 0.000 0.000 0.001 0.003 0.005 0.006 0.009 0.050

K1
Critical value 7.974 8.269 8.527 8.777 8.676 8.702 8.472 8.557 7.838

p-value 0.046 0.040 0.034 0.030 0.032 0.031 0.035 0.034 0.050

K2
Critical value 18.602 19.047 19.012 19.296 19.273 18.889 18.711 18.411 18.307

p-value 0.046 0.040 0.040 0.037 0.037 0.042 0.044 0.048 0.050

C1
Critical value 8.885 9.200 9.488 9.522 9.409 9.178 9.618 9.351 9.906

p-value 0.056 0.047 0.041 0.040 0.042 0.048 0.038 0.044 0.050

C2
Critical value 34.307 34.379 34.146 33.755 33.170 33.543 32.669 32.303 31.410

p-value 0.024 0.024 0.025 0.028 0.032 0.029 0.037 0.040 0.050

approximate the null distributions fairly well for skewness statistics rather than kurtosis statistics or
combined statistics. This can be explained by the slow normal approximation for one dimensional
kurtosis in (2.10).

3. Example and Simulation Results

3.1. Example

We consider the data set of Rao (1948) that consists of the thickness of bark deposit on 28 cork trees
measured by the weight of cork borings from the north (N), east (E), west (W), and south (S). He
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Table 6: Simulated critical values and p-values using asymptotic distribution for p = 10, α = 0.10

Statistic Values n = 30 n = 40 n = 50 n = 100 n = 150 n = 200 n = 250 n = 300 n = ∞
B1 Critical value 1.190 0.943 0.780 0.394 0.267 0.201 0.157 0.132

B∗1
Critical value 7.247 7.288 7.325 6.973 6.950 6.899 6.709 6.738 6.551

p-value 0.069 0.067 0.066 0.080 0.081 0.083 0.092 0.090 0.100

S 1
Critical value 6.455 6.620 6.524 6.687 6.732 6.593 6.508 6.538 6.551

p-value 0.105 0.096 0.101 0.093 0.091 0.098 0.102 0.101 0.100

S 2
Critical value 16.177 6.198 15.814 15.910 16.131 16.008 16.059 16.136 15.987

p-value 0.095 0.094 0.105 0.102 0.096 0.099 0.098 0.096 0.100

B2 Critical value 5.613 4.661 3.800 2.035 1.338 0.954 0.782 0.618

B∗∗2
Critical value 11.445 11.232 10.642 9.841 9.239 8.568 8.647 8.118 6.551

p-value 0.007 0.008 0.011 0.017 0.023 0.034 0.032 0.043 0.100

K1
Critical value 6.665 6.884 6.983 7.168 6.993 7.208 7.026 6.978 6.551

p-value 0.094 0.084 0.079 0.072 0.079 0.070 0.078 0.080 0.100

K2
Critical value 15.955 16.316 16.494 16.726 16.623 16.346 16.475 16.067 15.987

p-value 0.101 0.091 0.086 0.081 0.083 0.090 0.087 0.098 0.100

C1
Critical value 7.461 7.700 7.974 8.038 8.082 7.928 8.096 7.893 7.790

p-value 0.119 0.105 0.091 0.088 0.086 0.093 0.085 0.095 0.100

C2
Critical value 29.932 30.656 30.067 29.796 29.440 29.495 29.267 29.117 28.412

p-value 0.071 0.060 0.069 0.073 0.079 0.078 0.083 0.085 0.100

Table 7: Statistics and p-values for the contrasts of Rao’s bark deposit data

B1 S 1 S 2 B2 K1 K2 C1 C2
Statistic 0.333 2.004 3.680 0.943 2.378 4.212 2.378 7.892
p-value 0.516 0.495 0.451 0.532 0.409 0.378 0.650 0.444

selected three constraints to investigate if the thickness of bark deposit varies in the four directions,

Y1 = N − E −W + S , Y2 = S −W, Y3 = N − S

by the reason he explained in the paper, and tested E(Yi) = 0, i = 1, 2, 3. The assumption of multi-
normality should be valid to test the problem by applying some techniques like Hotelling’s T 2 test.
Pearson (1956) also examined the data set in Example 2 in his paper.

For the contrasts (Y1, Y2,Y3), the skewness is (0.662, 0.228,−0.038), and the kurtosis is (3.812,
3.935, 1.641). After transforming to Zi in (2.1), the skewness in (2.2), and the kurtosis in (2.9) are( √

b1(1),
√

b1(2),
√

b1(3)
)
= (−0.577,−0.476,−0.21),

and

(b2(1), b2(2), b2(3)) = (3.764, 2.679, 1.981).

Applying the transformations in (2.8) and (2.13) yields(
T ∗1 ,T

∗
2 ,T

∗
3

)
= (−1.416,−1.180,−0.533), and

(
T ∗1∗,T ∗2∗,T ∗3∗

)
= (1.353, 0.051,−1.542).

Table 7 provides the statistics in this paper and the p-values. The p-values are computed using χ2

distributions. From the result, the multinormality of the contrasts could not be rejected that confirms
Rao’s test for contrasts as valid. Mardia (1975), and Srivastava and Hui (1987) also considered the
data set and have the same conclusion for the contrasts; however, they have different results for the
original data.
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Table 8: Power comparison of b∗1,M , B1, S 1, S 2, b2∗
2,M , B2,K1,K2, and C1,C2 (α = 0.05, d = 2, n = 20)

Alternative Group I Group II Group III
b∗1,M B1 S 1 S 2 b2∗

2,M B2 K1 K2 C1 C2

N(0, 1)2 5 5 4 5 5 5 4 4 4 4
C(0, 1)2 92 91 89 93 96 96 94 95 95 96
Logis(0, 1)2 16 12 14 15 15 18 10 10 14 15
(t2)2 64 61 64 63 71 69 63 65 68 68
(t5)2 28 25 24 27 27 31 22 22 23 25
B(1, 1)2 1 1 0 1 0 0 16 18 12 6
B(2, 2)2 2 1 2 1 1 1 6 7 6 2
B(1, 2)2 7 8 8 9 3 2 10 8 10 6
exp(1)2 71 69 70 71 55 48 41 47 64 64
LN(0, .5)2 53 50 51 57 41 37 36 32 45 50
Γ(0.5, 1)2 91 87 86 91 74 72 62 68 87 85
Γ(5, 1)2 24 22 23 23 17 15 13 14 21 23
(χ2

5)2 39 39 38 43 29 25 23 20 35 37
(χ2

15)2 17 18 18 20 15 13 10 12 14 16
N(0, 1) ∗ t5 16 19 15 17 18 18 15 15 17 16
N(0, 1) ∗ B(1, 1) 2 3 2 2 3 2 16 16 12 7
N(0, 1) ∗ exp(1) 47 43 43 43 31 30 21 23 39 35
N(0, 1) ∗ χ2

5 24 33 34 29 19 18 14 16 29 26
NMIX2(.5, 2, 0, 0) 3 3 2 3 3 4 10 11 8 4
NMIX2(.5, 4, 0, 0) 3 4 4 4 2 3 75 70 68 50
NMIX2(.5, 2, .9, 0) 22 14 14 16 16 21 18 21 22 20
NMIX2(.5, .5, .9, 0) 14 16 17 18 18 22 15 17 19 19
NMIX2(.5, .5, .9,−.9) 37 34 36 36 35 36 27 31 38 35

3.2. Simulation results

A simulation was performed to study the power of the proposed tests based on the skewness and
kurtosis of the scaled residuals. For dimensions and sample sizes, d = 2, n = 20, 50, d = 5, n = 20, 50,
and d = 10, n = 50, 100, the power of the statistics is presented in Tables 8–13 under the significance
level α = 0.05. We generated 1,000 samples from each of various alternative distributions. The
alternatives included in the study are distributions with independent marginals and mixtures of normal
distributions. The following notations are used. N(0, 1), C(0, 1), Logis(0, 1), and exp(1) stand for a
standard normal, Cauchy, logistic, and exponential distribution; χ2

k and tk are for the chi-square, t-
distribution with k degrees of freedom, respectively; Γ(a, b) is for the gamma distribution with density
b−aΓ(a)−1xa−1 exp(−x/b), x > 0; B(a, b) is for the beta distribution with density B(a, b)−1xa−1(1 −
x)b−1, 0 < x < 1; LN(a, b) is for the lognormal distribution with density (

√
2πbx)−1 exp(−(log x −

a)2/2b2), x > 0. Here N(0, 1), C(0, 1), Logis(0, 1), tk, B(1, 1), and B(2, 2) are symmetric distributions,
and the others are skewed distributions. The product of k independent copies of F1 is denoted by
Fk

1. The alternatives Fk
1 with symmetric marginals F1 such as C(0, 1), Logis(0, 1), tk, B(1, 1), and

B(2, 2) are in the first part of each table. F1 ∗ F2 denotes the distribution having independent marginal
distributions F1 and F2. NMIX2(κ, δ, ρ1, ρ2) is for the bivariate normal mixture

κN2

((
0
0

)
,

(
1 ρ1
ρ1 1

))
+ (1 − κ)N2

((
δ

δ

)
,

(
1 ρ2
ρ2 1

))
,

which is a correlated distribution.
In the study, we put the power of Kim (2004b)’s statistics b∗1,M , b2∗

2,M for comparison. As we
mentioned in Section 2, they are approximate statistics to Malkovich and Afifi (1973)’s skewness in
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Table 9: Power comparison of b∗1,M , B1, S 1, S 2, b2∗
2,M , B2,K1,K2, and C1,C2 (α = 0.05, d = 2, n = 50)

Alternative Group I Group II Group III
b∗1,M B1 S 1 S 2 b2∗

2,M B2 K1 K2 C1 C2

N(0, 1)2 5 4 6 4 4 5 6 6 5 5
C(0, 1)2 99 98 98 99 100 100 100 100 100 100
Logis(0, 1)2 22 20 20 20 33 26 20 23 22 27
(t2)2 87 85 86 86 98 95 93 95 92 94
(t5)2 39 38 36 40 56 48 41 44 45 49
B(1, 1)2 0 0 0 0 0 0 50 57 44 37
B(2, 2)2 0 0 0 1 0 0 23 27 18 10
B(1, 2)2 17 18 18 25 1 1 18 18 20 20
exp(1)2 100 96 97 97 86 80 72 73 93 96
LN(0, .5)2 95 89 89 90 73 70 60 63 84 84
Γ(0.5, 1)2 100 100 99 100 96 94 92 95 99 99
Γ(5, 1)2 60 53 54 60 29 28 24 23 44 48
(χ2

5)2 85 81 76 82 53 49 39 43 72 75
(χ2

15)2 43 41 40 45 25 22 15 17 33 36
N(0, 1) ∗ t5 27 28 22 25 33 34 27 28 28 30
N(0, 1) ∗ B(1, 1) 3 2 3 2 2 2 72 72 66 54
N(0, 1) ∗ exp(1) 93 82 82 82 62 55 43 46 74 73
N(0, 1) ∗ χ2

5 61 75 75 73 32 35 30 30 65 59
NMIX2(.5, 2, 0, 0) 2 3 3 2 3 3 39 38 31 25
NMIX2(.5, 4, 0, 0) 2 2 2 3 2 28 99 99 99 99
NMIX2(.5, 2, .9, 0) 51 19 19 22 33 45 44 52 40 42
NMIX2(.5, .5, .9, 0) 26 24 23 26 35 41 28 33 32 34
NMIX2(.5, .5, .9,−.9) 53 53 51 54 66 60 45 56 54 64

(2.5) and kurtosis in (2.12), respectively. The statistics b∗1,M , b2∗
2,M are as follows,

b∗1,M = max
1≤l≤n

1
n2

[∑n
j=1

((
Xl − X̄

)′
S−1

(
X j − X̄

))3]2

[(
Xl − X̄

)′
S−1

(
Xl − X̄

)]3 ,

b2∗
2,M = max

1≤l≤n

1
n

∑n
j=1

((
Xl − X̄

)′
S−1

(
X j − X̄

))4

[(
Xl − X̄

)′
S−1

(
Xl − X̄

)]2 − 3


2

.

From now on, we refer to Group I for statistics based on skewness, b∗1,M , B1, S 1, and S 2, Group II for
b∗2,M , B2, K1, and K2 on kurtosis, and Group III for C1 and C2 that are the combined statistics shown
in Tables 8–13.

Each number in Tables 8–13 represents the empirical power of each test in percentage form
rounded to the next integer. From the first line of each table, we can see that every statistic seems
to have good control of type I error due to the use of critical values from the simulation rather than
from asymptotic distributions. The best power for each alternative is written in bold, except when the
numbers are all the same as 100.

The power study in Tables 8–13 indicates the following. First, statistics in each group show similar
power, except that K1, K2 are more powerful when alternatives are NMIX2(.5, 2, 0, 0), NMIX2(.5, 4, 0,
0), or with shorter tailed marginals beta distributions such as B(1, 1)k, B(2, 2)k, B(1, 2)k, and N(0, 1)k−1∗
B(1, 1), k = 2, 5, 10. This happens for every combination of d and n considered in the study, and ap-
pears predominantly when the sample size n is big relative to the dimension p. Statistics that belong
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Table 10: Power comparison of b∗1,M , B1, S 1, S 2, b2∗
2,M , B2,K1,K2, and C1,C2 (α = 0.05, d = 5, n = 20)

Alternative Group I Group II Group III
b∗1,M B1 S 1 S 2 b2∗

2,M B2 K1 K2 C1 C2

N(0, 1)5 4 6 5 4 6 6 6 6 4 4
C(0, 1)5 98 97 98 99 100 100 99 100 99 99
Logis(0, 1)5 12 12 13 14 16 14 12 11 11 14
(t2)5 78 75 76 81 81 78 76 77 78 85
(t5)5 28 26 24 25 30 28 23 25 26 28
B(1, 1)5 1 2 2 2 1 3 6 9 6 3
B(2, 2)5 1 2 3 3 2 2 6 6 4 2
B(1, 2)5 3 5 5 7 4 4 7 7 6 6
exp(1)5 59 61 59 69 57 49 42 45 55 64
LN(0, .5)5 44 44 48 56 44 42 36 38 44 49
Γ(0.5, 1)5 83 82 82 89 81 74 62 74 80 88
Γ(5, 1)5 15 18 20 21 19 15 11 13 17 16
(χ2

5)5 30 32 31 35 28 27 23 20 29 35
(χ2

15)5 11 13 13 18 14 12 8 10 12 14
N(0, 1)4 ∗ t5 9 11 11 11 10 12 10 11 11 12
N(0, 1)4 ∗ B(1, 1) 4 4 3 4 4 4 5 8 5 4
N(0, 1)4 ∗ exp(1) 21 18 17 18 18 14 14 12 16 15
N(0, 1)4 ∗ χ2

5 11 24 22 22 11 17 11 14 19 17

Table 11: Power comparison of b∗1,M , B1, S 1, S 2, b2∗
2,M , B2,K1,K2, and C1,C2 (α = 0.05, d = 5, n = 50)

Alternative Group I Group II Group III
b∗1,M B1 S 1 S 2 b2∗

2,M B2 K1 K2 C1 C2

N(0, 1)5 6 4 4 4 5 5 5 4 5 6
C(0, 1)5 100 100 100 100 100 100 100 100 100 100
Logis(0, 1)5 30 18 18 20 30 26 17 18 18 24
(t2)5 98 95 94 96 100 99 98 100 98 99
(t5)5 51 40 42 46 60 55 43 46 43 54
B(1, 1)5 0 2 1 1 0 1 22 25 16 10
B(2, 2)5 1 1 1 1 0 1 11 12 8 4
B(1, 2)5 2 7 7 11 1 2 9 10 8 8
exp(1)5 99 94 91 97 91 82 73 81 91 96
LN(0, .5)5 94 87 86 91 82 74 64 70 79 89
Γ(0.5, 1)5 100 99 100 100 99 98 94 98 99 100
Γ(5, 1)5 50 41 39 49 34 28 22 20 36 44
(χ2

5)5 80 67 67 75 57 46 36 40 64 69
(χ2

15)5 39 29 30 36 27 17 15 16 24 32
N(0, 1)4 ∗ t5 19 17 16 18 22 25 20 21 22 21
N(0, 1)4 ∗ B(1, 1) 4 3 4 4 3 4 42 37 34 24
N(0, 1)4 ∗ exp(1) 59 39 40 48 40 27 26 21 36 37
N(0, 1)4 ∗ χ2

5 32 61 62 58 19 26 25 22 55 47

to Group I or Group II show very poor power against the above alternatives; however, K1, K2 in Group
II and C1, C2 in Group III have relatively good power, and K1, K2 is slightly superior to C1, C2 against
the alternatives.

Second, Group I statistics based on skewness seem to have better power than Group II statistics
based on kurtosis against alternatives with skewed marginal distributions such as exp(1)k, LN(0, .5)k,
Γ(.5, 1)k, Γ(5, 1)k, (χ2

5)k, (χ2
15)k, N(0, 1)k−1 ∗ exp(1), and N(0, 1)k−1 ∗ χ2

5. Group I have similar or better
power to Group III combined statistics against these alternatives.
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Table 12: Power comparison of B1, S 1, S 2, B2,K1,K2, and C1,C2 (α = 0.05, d = 10, n = 50)

Alternative Group I Group II Group III
B1 S 1 S 2 B2 K1 K2 C1 C2

N(0, 1)10 4 6 5 4 4 4 5 5
C(0, 1)10 100 100 100 100 100 100 100 100
Logis(0, 1)10 16 18 17 16 12 15 12 18
(t2)10 98 98 100 99 99 100 99 100
(t5)10 44 44 48 51 40 45 43 50
B(1, 1)10 2 2 2 2 7 10 6 4
B(2, 2)10 2 2 2 2 7 6 6 3
B(1, 2)10 4 5 7 3 5 4 7 5
exp(1)10 87 88 95 76 61 77 81 92
LN(0, .5)10 81 80 87 69 58 68 73 85
Γ(0.5, 1)10 98 98 100 96 90 97 97 100
Γ(5, 1)10 29 31 41 21 12 17 24 28
(χ2

5)10 54 54 66 38 27 33 43 57
(χ2

15)10 23 24 28 15 12 11 15 20
N(0, 1)9 ∗ t5 14 15 15 17 14 14 14 15
N(0, 1)9 ∗ B(1, 1) 4 4 5 4 13 12 11 8
N(0, 1)9 ∗ exp(1) 22 23 19 16 12 12 16 18
N(0, 1)9 ∗ χ2

5 53 54 45 23 18 17 41 34

Table 13: Power comparison of B1, S 1, S 2, B2,K1,K2, and C1,C2 (α = 0.05, d = 10, n = 100)

Alternative Group I Group II Group III
B1 S 1 S 2 B2 K1 K2 C1 C2

N(0, 1)10 5 4 5 4 5 5 6 5
C(0, 1)10 100 100 100 100 100 100 100 100
Logis(0, 1)10 20 16 25 29 15 22 18 27
(t2)10 100 100 100 100 100 100 100 100
(t5)10 57 56 62 75 64 72 63 76
B(1, 1)10 1 1 1 1 19 21 14 7
B(2, 2)10 2 2 1 2 9 12 8 4
B(1, 2)10 8 7 12 2 8 8 9 10
exp(1)10 99 97 100 95 88 95 98 100
LN(0, .5)10 96 96 99 88 80 91 94 98
Γ(0.5, 1)10 100 100 100 100 100 100 100 100
Γ(5, 1)10 52 51 67 32 20 23 41 56
(χ2

5)10 81 79 90 58 43 55 73 88
(χ2

15)10 33 33 49 24 15 16 27 38
N(0, 1)9 ∗ t5 21 22 20 29 27 23 26 25
N(0, 1)9 ∗ B(1, 1) 6 4 3 4 67 56 65 41
N(0, 1)9 ∗ exp(1) 33 31 34 21 18 17 28 30
N(0, 1)9 ∗ χ2

5 93 92 80 43 31 28 86 64

Third, we see that the statistic b2∗
2,M is more sensitive than the other statistics in Group II, B2,K1,K2,

except the alternatives with beta marginals or some normal mixtures. This might be explained by the
fact that b2∗

2,M is trying to search the direction of vector that gives at least normal to the univariate one.
For alternatives with beta marginals, K1 and K2 show superior power.

In general, it seems Group III statistics C1, C2 have relatively good power for all alternatives under
study. They are likely to have the merits of both Group I and Group II, and they might be considered
omnibus tests, although they are not uniformly the most powerful, and the sample size needs to be
moderately large to use asymptotic distribution.
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4. Concluding Remarks

In this study, we propose test statistics based on the skewness and kurtosis of the scaled residuals
for testing multinormality. We consider the skewness or the kurtosis in each coordinate of the scaled
residuals, and transform them to normality in each coordinate. The null distribution of the statistic can
be approximated by simple distribution, and the approximation is adequate by applying the transfor-
mation to normality. Through the simulation study, the combined statistics of skewness and kurtosis
show moderate sensitivity for all alternatives under study.
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