• Title/Summary/Keyword: Normal point

Search Result 1,872, Processing Time 0.026 seconds

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF

An Object Recognition Method Based on Depth Information for an Indoor Mobile Robot (실내 이동로봇을 위한 거리 정보 기반 물체 인식 방법)

  • Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.958-964
    • /
    • 2015
  • In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

Using multiple point constraints in finite element analysis of two dimensional contact problems

  • Liu, C.H.;Cheng, I.;Tsai, An-Chi;Wang, Lo-Jung;Hsu, J.Y.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • Two-dimensional elastic contact problems, including normal, tangential, and rolling contacts, are treated with the finite element method in this study. Stress boundary conditions and kinematic conditions are transformed into multiple point constraints for nodal displacements in the finite element method. Upon imposing these constraints into the finite element system equations, the calculated nodal stresses and nodal displacements satisfy stress and displacement contact conditions exactly. Frictional and frictionless contacts between elastically identical as well as elastically dissimilar materials are treated in this study. The contact lengths, sizes of slip and stick regions, the normal and the shear stresses can be found.

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

Some Properties of Sequential Point Estimation of the Mean

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.657-663
    • /
    • 2005
  • Under the minimum risk point estimation formulation of Robbins(1959), we consider the sequential point estimation problem for normal population $N({\theta},\;{\theta})$ with unknown parameter ${\theta}$. In the case of completely unknown ${\theta}$, Stein's(1945) two-stage procedure is known to enjoy the consistency property, but it is not even first-order efficient. In the case when ${\theta}>{\theta}_L\;where\;{\theta}_L(>0)$ is known, the revised two-stage procedure is shown to enjoy all the usual second-order properties.

  • PDF

Change-point Estimators Using Rank Average in Location Change Model

  • Kim, Jeahee;Jang, Heeyoon
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.467-478
    • /
    • 1999
  • This paper deals with the problem of change-point estimation where there is one level change in location with iid errors. A change-point estimator using rank average is proposed with the proof of its consistency. A comparison study of various change-point estimators is done by simulation on the mean the proportion and the variance when the errors are from the normal and the double exponential distributions.

  • PDF

LEFSCHETZ FIXED POINT THEORY FOR COMPACT ABSORBING CONTRACTIVE ADMISSIBLE MAPS

  • Cho, Yeol-Je;Q'Regan, Donal;Yan, Baoqiang
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.69-83
    • /
    • 2009
  • New Lefschetz fixed point theorems for compact absorbing contractive admissible maps between Frechet spaces are presented. Also we present new results for condensing maps with a compact attractor. The proof relies on fixed point theory in Banach spaces and viewing a Frechet space as the projective limit of a sequence of Banach spaces.

  • PDF

A comparative study of three collocation point methods for odd order stochastic response surface method

  • Li, Dian-Qing;Jiang, Shui-Hua;Cheng, Yong-Gang;Zhou, Chuang-Bing
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.595-611
    • /
    • 2013
  • This paper aims to compare three collocation point methods associated with the odd order stochastic response surface method (SRSM) in a systematical and quantitative way. The SRSM with the Hermite polynomial chaos is briefly introduced first. Then, three collocation point methods, namely the point method, the root method and the without origin method underlying the odd order SRSMs are highlighted. Three examples are presented to demonstrate the accuracy and efficiency of the three methods. The results indicate that the condition that the Hermite polynomial information matrix evaluated at the collocation points has a full rank should be satisfied to yield reliability results with a sufficient accuracy. The point method and the without origin method are much more efficient than the root method, especially for the reliability problems involving a large number of random variables or requiring complex finite element analysis. The without origin method can also produce sufficiently accurate reliability results in comparison with the point and root methods. Therefore, the origin often used as a collocation point is not absolutely necessary. The odd order SRSMs with the point method and the without origin method are recommended for the reliability analysis due to their computational accuracy and efficiency. The order of SRSM has a significant influence on the results associated with the three collocation point methods. For normal random variables, the SRSM with an order equaling or exceeding the order of a performance function can produce reliability results with a sufficient accuracy. The order of SRSM should significantly exceed the order of the performance function involving strongly non-normal random variables.