Electrical resistance strain gauges, brittle-coatings, Moir'e fringe analysis, photoelasticity methods, etc, have been employed in the study of stress analysis and three-dimensional photoelasticity method used in this experiment. The author fabricated a total of 24 samples of maxillary and mandibular edentulous ridges with normal and sharp shapes using epoxy resin, one of the photoelastic materials. In addition, complete denture made from artificial resin teeth in other twoo sizes, large and medium size, were affixed to the specimens and attached to an articulator. The following results were attained by cutting 9 slice specimens into 6mm thick portions, in accordance with the three dimensional photoelastic stress freezing method, to analyze stress distribution status under specific static loading in the central, lateral and protrusive occlusions of the shape of edentulous ridge. 1. In the case of central occlusion, when complete resin artificial teeth in large and medium sizes were used on normal and sharp alveolar ridges, high stress distribution was broadly shown in the labio-buccal sides, and low and concentrated in the lingual sides, in all cases. Generally, the highest stresses were shown at the top of the alveolus, or at 2mm below the top of the alveolus, particularly in the specimen 2, 3, and stresses were more or less the same in the symmetrical right and left sides. 2. In the case of lateral occlusion, when the same load was applied, high stresses were shown broadly at the working sides in both the labio-buccal and lingual sides, and low and concentrated at the balanced sides. The highest stresses were shown in the top of the alveolus on the working sides in specimen 2 portion, and the lowest stresses at the balanced sides in specimen 6, slightly higher stresses were shown at retromolar parts in the balanced sides. 3. In the case of protrusive occlusion, high stresses were broadly shown at the labio-buccal sides, and slightly higher stresses at the top 2, 4, and 6mm parts of the alveolus with concentration. The highest stresses were shown in specimen No. 5 and the lowes stresses in specimen 1, 9 and stresses were more of less the same at the symmetrical right and left sides.