DOI QR코드

DOI QR Code

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test

직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동

  • Hong, Young-Ho (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Byun, Yong-Hoon (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Chae, Jong-Gil (TBM Engrg. Team, Engrg. and Construction Group, Samsung C&T Corporation) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 홍영호 (고려대학교 건축사회환경공학부) ;
  • 변용훈 (고려대학교 건축사회환경공학부) ;
  • 채종길 (삼성물산 TBM Engineering) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2015.01.21
  • Accepted : 2015.02.11
  • Published : 2015.03.31

Abstract

Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

직접전단시험은 전단상자의 경계조건에 따라 흙의 전단거동이 달라지는 것으로 알려져있다. 본 연구의 목적은 Type-A 형태의 기존 직접전단시험기의 문제점에 대해 분석하고 Type-C 형태의 직접전단시험기의 개발을 통해 신뢰성 높은 직접전단결과를 도출하는데 있다. 기존 직전단시험기와 새로 개발된 직접전단시험기를 사용하여 상대밀도가 60%로 조성된 모래시료에 대해 초기 구속응력 50kPa, 100kPa, 200kPa, 300kPa, 400kPa에서 0.5mm/min의 일정한 전단속도로 직접전단시험을 수행하였다. 일정수직하중 조건에서 수행된 Type-A의 직접전단시험기와 Type-C 시험기의 결과를 비교하여 새로 개발된 시험기의 신뢰성을 평가하였다. 또한 새로 개발된 시험기를 사용하여 일정 수직하중 조건과 정압조건의 두 가지 구속조건에 대한 직접전단시험을 수행하여 그 결과를 비교, 분석하였다. 실험결과, Type-A의 직접전단시험기에서는 하중재하판과 상부 전단상자가 기울거나, 흙의 체적변화로부터 발생되는 시료와 전단상자 내부 벽면간의 마찰이 전단면에 작용하는 응력에 영향을 끼치게 되는 문제가 발생하였다. Type-A의 직접전단시험기에서는 전단상자 형태와 경계조건에 따라 전단강도가 과대 혹은 과소평가 되었다. Type-C의 직접전단시험기에서는 구속조건에 상관없이 일관성있는 실험결과를 나타내었다. 본 연구는 Type-C의 형태로 개발된 직접전단시험기를 통해 Type-A 직접전단시험법의 문제점을 해결하고 신뢰성있는 결과를 도출할 수 있음을 보여준다.

Keywords

References

  1. Airey, D. W., Budhu, M., and Wood, D. M. (1984), "Some Aspects of the behaviour of Soils in Simple Shear", CUED/D-SOILS/TR155, University of Cambridge Department of Engineering, 38p.
  2. Airey, D. W. (1987), "Some Observations on the Interpretation of Shearbox Test Results", CUED/D-SOILS/TR 196, University of Cambridge, 33p.
  3. Assadi, A. (1975), "Rupture Layers in Granular Materials", Ph.D. Thesis, University of London.
  4. ASTM Standard D 3080-04. (2004), Standard test method for direct shear test under consolidated drained condition, Annual Book of ASTM Standard, Vol. 04.08, ASTM International, West Conshohocken, PA.
  5. Budhu, M. (1984), "Nonuniformities Imposed by Simple Shear Apparatus", Canadian Geotechnical Journal, Vol.21, No.1, pp.125-137. https://doi.org/10.1139/t84-010
  6. Cerato, A. B. and Lutenegger, A. J. (2006), "Specimen Size and Scale Effects of Direct Shear Box Tests of Sands", Geotechnical Testing Journal, Vol.29, No.6, pp.507-516.
  7. Dounias, G. T. and Potts, D. M. (1993), "Numerical Analysis of Drained Direct and Simple Shear Tests", Journal of Geotechnical Engineering, Vol.119, No.12, pp.1870-1891. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1870)
  8. Head, K. H. and Epps, R. (1986), Manual of soil laboratory testing, London: Pentech Press, 1238p.
  9. Jewell, R. A. and Wroth, C. P. (1987), "Direct Shear Tests on Reinforced Sand", Geotechnique, Vol.37, No.1, pp.53-68. https://doi.org/10.1680/geot.1987.37.1.53
  10. Jewell, R. A. (1989), "Direct Shear Tests on Sand", Geotechnique, Vol.39, No.2, pp.309-322. https://doi.org/10.1680/geot.1989.39.2.309
  11. Jung, M. S., Chae, J. G., and Shibuya, S. (2009), "Shear Rate Effect on Undrained Shear behavior of Holocene Clay", Journal of Korean Geotechnical Society, Vol.25, No.3, pp.5-12.
  12. Kim, B. S., Shibuya, S., Park, S. W., and Kato, S. (2012), "Effect of Opening on the Shear behavior of Granular Materials in Direct Shear Test", KSCE Journal of Civil Engineering, Vol.16, No.7, pp. 1132-1142. https://doi.org/10.1007/s12205-012-1518-4
  13. Kim, J. Y., Yang, T. S., and Akihiko, O. (2005), "A Study on Improvement of Shear Test Apparatus in the Direct Shear Test Under Constant Pressure", Journal of Korean Geotechnical Society, Vol.21, No.2, pp.137-144.
  14. Lings, M. L. and Dietz, M. S. (2004), "An Improved Direct Shear Apparatus for Sand", Geotechnique, Vol.54, No.4, pp.245-256. https://doi.org/10.1680/geot.2004.54.4.245
  15. Mikasa, M. (1960), "New Direct Shear Test Apparatus", Proceedings of the 15th Annual Convention Japanese Society Civil Engineering, Tokyo, pp.45-48.
  16. Morgenstern, N. R. and Tchalenko, J. S. (1967), "Microscopic Structures in Kaolin Subjected to Direct Shear", Geotechnique, Vol.17, No.4, pp.309-328. https://doi.org/10.1680/geot.1967.17.4.309
  17. Palmeira, E. M. (1987), "The Study of Soil-reinforcement Interaction by Means of Large Scale Laboratory Tests", Ph.D. Thesis, University of Oxford, 238p.
  18. Palmeira, E. M. and Milligan, G. W. E. (1989), "Scale Effects in Direct Shear Tests on Sand", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Vol.1, No.1, pp.739-742.
  19. Potts, D. M., Dounias, G. T., and Vaughan, P. R. (1987), "Finite Element Analysis of the Direct Shear Box Test", Geotechnique, Vol.37, No.1, pp.11-23. https://doi.org/10.1680/geot.1987.37.1.11
  20. Scarpelli, G. and Wood, D. M. (1982), "Experimental Observations of Shear Band Patterns in Direct Shear Tests", IUTAM Conference on Deformation and Failure of Granular Materials.
  21. Shibuya, S., Mitachi, T., and Tamate, S. (1997), "Interpretation of Direct Shear Box Testing of Sands as Quasi-simple Shear", Geotechnique, Vol.47, No.4, pp.769-790. https://doi.org/10.1680/geot.1997.47.4.769
  22. Shibuya, S., Koseki, J., and Kawaguchi, T. (2005), "Recent Developments in Deformation and Strength Testing of Geomaterials", Deformation characteristics of geomaterials, Di Benedetto et al., Eds., Taylor Francis Group, London, pp.3-26.
  23. Simoni, A. and Houlsby, G. T. (2006), "The Direct Shear Strength and Dilatancy of Sand-gravel Mixtures", Geotechnical and Geological Engineering, Vol.24, No.3, pp.523-549. https://doi.org/10.1007/s10706-004-5832-6
  24. Skempton, A. W. and Bishop, A. W. (1950), "The Measurement of the Shear Strength of Soils", Geotechnique, Vol.2, No.2, pp. 90-108. https://doi.org/10.1680/geot.1950.2.2.90
  25. Takada, N. (1993), "Mikasa's Direct Shear Apparatus, Test Procedures and Results", Geotechnical Testing Journal, Vol.16, No.3, pp.314-322. https://doi.org/10.1520/GTJ10052J
  26. Tatsuoka, F., Nakaumura, S., Huang, C.-C., and Tani, K. (1990), "Strength Anisotropy and Shear Band Direction in Plane Strain Tests in Sand", Soils and Foundations, Vol.30, No.1, pp.35-54. https://doi.org/10.3208/sandf1972.30.35
  27. Tejchman, J. and Bauer, E. (2005), "Fe-simulations of a Direct and a True Simple Shear Test Within a Polar Hypoplasticity", Computers and Geotechnics, Vol.32, No.1, pp.1-16. https://doi.org/10.1016/j.compgeo.2004.11.004
  28. Vermeer, P. A. (1990), "The Orientation of Shear Bands in Biaxial Tests", Geotechnique, Vol.40, No.2, pp.223-236. https://doi.org/10.1680/geot.1990.40.2.223
  29. Wang, J. and Gutierrez, M. (2010), "Discrete Element Simulations of Direct Shear Specimen Scale Effects", Geotechnique, Vol.60, No.5, pp.395-409. https://doi.org/10.1680/geot.2010.60.5.395
  30. Wu, P. K., Matsushima, K., and Tatsuoka, F. (2008), "Effects of Specimen Size and Some Other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests", Geotechnical Testing Journal, Vol.31, No.1, pp.45-64.

Cited by

  1. 직접전단시험에 의한 모래의 전단강도에서 시편의 크기효과 vol.15, pp.4, 2015, https://doi.org/10.15683/kosdi.2019.12.31.590