• Title/Summary/Keyword: Normal Loading

Search Result 602, Processing Time 0.03 seconds

Evaluation of Dowel Bearing Strength of Structural Composite Lumber(SCL) on the Effect of Moisture Content

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.61-69
    • /
    • 2003
  • This study investigated the effect of moisture content and loading direction on dowel bearing strength of two types of SCL. Dowel bearing tests of LVL and PSL were conducted with two different MC level, 7.5% and 19%, and two different oriention, L-direction(loading parallel to grain) and X-direction(loading perpendicular to grain). Most of specimens showed typical load-deformation curves and intersected 5% offset line. Failure modes were classified into two categories; spliting(for L-direction specimens) and peeling(for X-direction specimens). Dowel bearing strength generally decreased with increasing MC. The decreasing rate was more significant in X-directon. ESG also decreased with increasing MC, and the ratio of ESG of 7.5% versus 19% was about 1.47. Dowel bearing strength of LVL and PSL in L-direction was higher than that of X-direction. This results indicated that MC and loading orientation had a significant effect on dowel bearing strength of SCL. The average dowel bearing strength of LVL were higher than that of PSL in each loading direction. Two types of probability distribution model were chosen to quantify strength distribution, normal and 2-parameter weibull distribution. The two models showed good agreement with the data, especially in lower tail of the cumulative distribution. Normal and 2-parameter weibull distribution seemed to proper model of the dowel bearing strength for each MC levels.

Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading (변동하중하에서 고강도 알루미늄 합금의 피로수명 예측)

  • Sim, Dong-Seok;Kim, Gang-Beom;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

Influence of loading and unloading of hydraulic support on the caving property of top coal

  • Huayong Lv;Fei Liu;Xu Gao;Tao Zhou;Xiang Yuan
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • The caving property of top coal is a key factor to the success of top coal caving mining. The influence law of cyclic loading and unloading of hydraulic support on top coal caving is of great significance to improve the recovery rate of top coal. The similar simulation methods were used to study the dynamic evolution of the top coal cracks under the multi-cycle action of the support, and the parameters of top coal cracks were analyzed quantitatively in this paper. The results show that the top coal cracks can be divided into horizontal cracks and vertical cracks under the cyclic loading and unloading of the support. With the increase of the times of the support cycles loading and unloading, the load on the support decreases, the fractal dimension of the cracks increases, the number and total length of the top coal cracks increases, and the top coal caving is getting better. With the increase of the times of multi-cycle loading and unloading, the fractal dimension, total crack length and crack rate of top coal show a trend of rapid increase first and then increase slowly. Both the total length of the top coal cracks and the crack rate basically show linear growth with the change of the fractal dimension. The top coal caving can be well improved and the coal resource recovery rate increased through the multi-cycle loading and unloading.

A STUDY ON ORAL SENSORY FUNCTION IN THE IMPLANT-SUPPORTED PROSTHESES WEARERS (치과 임플랜트 보철 장착자의 구강 감각 기능에 관한 연구)

  • Jang, Kyoung-Soo;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.215-232
    • /
    • 1991
  • In this study, oral sensory function in the osseointegrated root form implant-supported prostheses wearers was estimated by measuring occlusal tactile perception threshold of thickness and sensibility threshold against lateral static loading, and comparing with normal dentition subjects and complete denture wearers group. Osseointegrated root form implants seemed to be restored in the sensation to some extent, and so, dental implants restored edentulous patients in a wide meaning. Conclusions were summarized as following. 1. Occlusal tactile perception threshold of thickness was highest in complete denture wearers group, following by implant-supported prostheses wearers group, normal dentition subjects group. 2. In the implant-supported prostheses wearers group, occlusal tactile perception threshold of opposing artificial teeth case was higher than of opposing natural or opposing implantsupported teeth case. 3. Sensibility threshold against lateral loading of complete denture wearers and implantsupported prostheses wearers group was higher than that of normal dentition subject group. 4. In the implant-supported prostheses group, sensibility threshold against lateral loading was not significantly different between upper and lower jaws. 5. In occlusal tactile perception threshold of thickness and sensibility threshold against lateral loading test, there was no regularity among values of each tooth, and no significant difference between anterior and posterior teeth as well.

  • PDF

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

A Study on the Bond-Behavior of Bonded Concrete Overlays (접착식 콘크리트 덧씌우기 포장의 부착거동 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

The Subsurface Stress Field Caused by Both Normal Loading and Tangential Loading

  • Koo Young- Phi;Kim Tae-Wan;Cho Yong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1967-1974
    • /
    • 2005
  • The subsurface stress field caused by both normal loads and tangential loads has been evaluated using the rectangular patch solution. The effect of tangential loading on the subsurface stress field has been investigated in detail for both the cylinder-on-cylinder contact and a spur gear teeth contact. For the cylinder-on-cylinder contact, the subsurface stress fields are moved more to the direction of tangential loads and the positions where the maximum stress occur are getting closer to the surface with the increasing tangential loads. The subsurface stress fields of the gear teeth contact are expanded more widely to the direction of tangential loads with the increasing tangential loads. The friction coefficient of a gear teeth contact is low because they are operated in a lubricated condition, and therefore surface tractions in the EHL condition hardly affect on the subsurface stress field.