• 제목/요약/키워드: Normal Human Fibroblasts

검색결과 123건 처리시간 0.025초

Low-Dose Radiation Stimulates the Proliferation of Normal Human Lung Fibroblasts Via a Transient Activation of Raf and Akt

  • Kim, Cha Soon;Kim, Jin Kyoung;Nam, Seon Young;Yang, Kwang Hee;Jeong, Meeseon;Kim, Hee Sun;Kim, Chong Soon;Jin, Young-Woo;Kim, Joon
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.424-430
    • /
    • 2007
  • The biological effects of low-dose radiation have been investigated and debated for more than a century, but its cellular effects and regulatory mechanisms remain poorly understood. This study shows the human cellular responses to low-dose radiation in CCD-18 Lu cells, which are derived from normal human lung fibroblasts. We examined a colony-forming assay for cell survival by ionizing radiation. Live cell counting and cell cycle analysis were measured for cell proliferation and cell cycle progression following low-dose irradiation. We examined Raf and Akt phosphorylation to determine the proliferation mechanism resulting from low-dose radiation. We also observed that p53 and p21 were related to cell cycle response. We found that 0.05 Gy of ionizing radiation enhanced cell proliferation and did not change the progression of the cell cycle. In addition, 0.05 Gy of ionizing radiation transiently activated Raf and Akt, but did not change phospho-p53, p53 and p21 in CCD-18 Lu cells. However, 2 Gy of ionizing radiation induced cell cycle arrest, phosphorylation of p53, and expression of p53 and p21. The phosphorylation of Raf and Akt proteins induced by 0.05 Gy of ionizing radiation was abolished by pre-treatment with an EGFR inhibitor, AG1478, or a PI3k inhibitor, LY294002. Cell proliferation stimulated by 0.05 Gy of ionizing radiation was blocked by the suppression of Raf and Akt phosphorylation with these inhibitors. These results suggest that 0.05 Gy of ionizing radiation stimulates cell proliferation through the transient activation of Raf and Akt in CCD-18 Lu cells.

Effects of Meretrix Extracts on the Collagenase Activity and Procollagen Synthesis in HS68 Human Fibroblasts and Tyrosinase Activity

  • Leem, Kang-Hyun
    • 동의생리병리학회지
    • /
    • 제25권3호
    • /
    • pp.528-532
    • /
    • 2011
  • This study was designed to investigate the collagen metabolism and tyrosinase activity of Meretrix extracts (ME). The effect of ME on type I procollagen production and collagenase activity in human normal fibroblasts HS68 after UVB (312 nm) irradiation was measured by ELISA method. The tyrosinase activity after treatment of ME was measured as well. Type I procollagen production was recovered by ME in UVB damaged HS68 cells. The increased collagenase activity after UVB damage was significantly recovered by ME. The tyrosinase activity and L-DOPA oxidation were significantly reduced as well. However, the effects on tyrosinase activity and L-DOPA oxidation were not powerful enough to be used as whitening agents. ME showed the anti-wrinkle effects and some whitening effects in vitro. These results suggest that ME may be a useful drug as an anti-wrinkle treatments.

Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes

  • Won Ho Jung;Jihyeon Song;Gayeon You;Jun Hyuk Lee;Sin Won Lee;Joong-Hoon Ahn;Hyejung Mok
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.135-141
    • /
    • 2023
  • Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 ㎍/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.

암대극 추출물의 화장품 원료로서의 특성 (Application as a Cosmeceutical Ingredient of Extract from Euphorbia jolkini)

  • 이대우;김영진;김영실;엄상용;김종헌
    • 대한화장품학회지
    • /
    • 제33권4호
    • /
    • pp.275-280
    • /
    • 2007
  • 본 연구는 암대극 추출물의 화장품 원료로서의 특성을 알아보기 위하여 항산화, 미백 및 항염 효과와 관련된 다양한 실험을 실시하였다. 암대극 70 % 메탄올 추출물은 MPLC를 사용하여 5개의 분획들로 분리하였다. 1번과 5번 분획에서 항산화(Mn-SOD 생성 억제), 미백(세포 내 멜라닌 생성 억제) 그리고 항염($IL-1{\alpha}$, IL-6, COX-2, Total NO 생성 억제)효과를 나타내었다. 이러한 결과를 종합해 볼 때, 암대극 추출물은 화장품 원료로서의 개발이 기대된다.

In vitro Alternatives to Skin Irritation Test

  • Shin, Dae-Sup;Kim, Dai-Byung;Ryu, Seung-Rel;Lee, Sun-Hee;Koh, Jae-Sook;Park, Won-Sae;Kim, Pu-Young
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.242-244
    • /
    • 1995
  • In vitro cell culture system has been proposed as a promising alternative model to in vivo skin irritation test. These studies were performed to screen the cytotoxicity effects of surfactants using normal human skin fibroblasts. Cell membrane integrity assessed by the leakage of lactate dehydrogenase (LDH) and mitochondrial integrity by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromides reduction test were affected in a dose dependent manner. The irritation potential of surfactants to human skin patch test, and the changes of capillary permeability by rabbit intradermal safety test were assessed as in vivo methods. Our results suggest that LDH leakage assay and MTT reduction test using cultured human fibroblasts could be predictive for the irritancy of various surfactants in human, and LDH assay is superior correlated with in vivo test (r=0.886) to MTT test with in vivotest (r=0.757).

  • PDF

Construction of Artificial Epithelial Tissues Prepared from Human Normal Fibroblasts and C9 Cervical Epithelial Cancer Cells Carrying Human Papillomavirus Type 18 Genes

  • Eun Kyung Yang;Seu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 1998
  • One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic concoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. The in vitro construction of three dimensional artificial cervical opithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissus having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determinining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, as epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokerations 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 was not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue devived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artifical cervical opithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.

  • PDF

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

  • Shrestha, Deepmala;Choi, Daeun;Song, Kiwon
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.436-443
    • /
    • 2018
  • The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was overexpressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.

Aralia cortex와 Phellodendron cortex의 혼합 추출물이 치주조직세포 활성에 미치는 영향 (Effect of mixed extracts of aralia cortex and phellodendron cortex on human periodontal tissue cells)

  • 송영보;이만섭;권영혁;박준봉;허익;김성진
    • Journal of Periodontal and Implant Science
    • /
    • 제29권1호
    • /
    • pp.15-30
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of mixed extracts of aralia cortex and phellodendron cortex (P55A) on activities of human gingival fibroblasts and periodontal ligament cells in vitro. First experiment was done to evaluate the effect of P55A in normal condition. In control group, the cells($4.5{\times}10^4$ cells/ml) were cultured with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum. In experimental groups, P55A was added to the above culture condition at the final concentrations of 0.1 ${\mu}g/ml$(Test group 1), 1 ${\mu}g/ml$(Test group 2) and 10 ${\mu}g/ml$(Test group 3). Then each group was tested for the cell proliferation rate at $\frac{1}{2}$, 2, 5 days, protein levels at 2, 5 days, and alkaline phosphatase activity at 2, 5 days. Second experiment was done to evaluate the effect of P55A in high glucose condition. 200 mg/dl glucose was added to the same culture condition of all groups in first experiment. Then each group was tested for the cell proliferation rate at $\frac{1}{2}$ , 2, 5 days, protein levels at 2, 5 days, and alkaline phoaphatase activity at 2, 5 days. The results were as follows ; 1. First experiment 1) As P55A concentration increased, cell proliferation rate increased significantly in test group 2 at 2 days, and test group 2 and 3 at 5 days in human gingival fibroblasts and periodontal ligament cells(P<0.05). 2) In human gingival fibroblasts, all test groups showed significantly increased protein levels as compared to control group at 5 days. In periodontal ligament cells, test group 2 and 3 showed significantly increased protein levels as compared to control group at 2, 5 days(P<0.05). 3) Alkaline phosphatase activity of human periodontal ligament cells increased as P55A concentration increased. The test group 2 and 3 showed significant increase as compared to control group at 5 days(P<0.05). 2. Second experiment 1) As P55A concentration increased, cell proliferation rate increased significantly in test group 2 at 2 days, and test group 2 and 3 at 5 days in human gingival fibroblasts and periodontal ligament cells(P<0.05). 2) In human gingival fibroblasts, test group 3 showed significantly increased protein levels as compared to control group at 2 days, and all test groups at 5 days. In periodontal ligament cells, test group 2 and 3 showed significantly increased protein levels as compared to control group at 2, 5 days(P<0.05). 3) Alkaline phosphatase activity of human periodontal ligament cells increased as P55A concentration increased. The test group 2 and 3 showed significant increase as compared to control group at 2 days, and all test groups at 5 days(P<0.05). From the above results, mixed extracts of aralia cortex and phellodendron cortex appeared to enhance cellular activities including cell proliferation rate, protein levels and alkaline phosphatase activity of human gingival fibroblasts and periodontal ligament cells in normal and high glucose condition. This study suggests that mixed extracts of aralia cortex and phellodendron cortex seem to be able to subside the inflammation of periodontal tissue and regenerate the destructed periodontal tissue.

  • PDF

Screening Methods for Anti-senescence Activity in Dermal Fibroblasts under Pyruvate-deprivation Conditions

  • Kil, In Sup;Shim, Jinsup;Cho, Gayoung;Choi, Sowoong;Son, Eui Dong;Kim, Hyoung-June
    • Korea Journal of Cosmetic Science
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2019
  • The identification of compounds with anti-senescence activity in cell culture system is a first step in aging research. Given that pyruvate can be used energy source by conversion to acetyl-CoA in mitochondria, and protects cultured cell from various stress-induced cell damage and cell death, synthetic media (e.g., DMEM) often includes 1 mM pyruvate, which is very higher than the pyruvate concentration in human blood (approximately 30 ��M). However, the use of medium containing high concentration of pyruvate is not suitable for screening anti-senescence compounds, because pyruvate also protects against the cellular senescence of primary human dermal fibroblasts (NHDFs) through NAD+ generated during conversion to lactate. In this study, four extracts, i.e., Sprouted seed and fruit complex, Poncirus trifoliata fruit extract, Jaum balancing complex, and Prunus mume extract were used for evaluation of different anti-senescence effect in the absence or presence of 0.1 mM pyruvate, similar to the physiological pyruvate concentration. The senescence in NHDFs cultured with DMEM in the presence of 0.1 mM pyruvate (approximately the physiological concentration in human blood) is accelerated, as observed in pyruvate deprivation conditions. The cytotoxicity of the Poncirus trifoliata fruit extract was protected by pyruvate, and Jaum balancing complex and Prunus mume extract had anti-senescence activity in the presence of 0.1 mM pyruvate, but not in the absence of pyruvate. Given that pyruvate is a powerful protector against both cytotoxicity and cellular senescence, the screening of candidate agents for anti-senescence in high pyruvate conditions using an in vitro cell culture system is not valid. Therefore, we recommend the use of a low concentration of pyruvate to evaluate the anti-senescence effects of candidates, which is more similar to in vivo aging conditions than excessive stress-induced senescence models, to exclude the effect of excessive pyruvate in vitro.

니코틴이 치은섬유아세포의 세포주기 조절 단백질 발현에 미치는 영향 (Effects of Nicotine on the Expression of Cell Cycle Regulatory Proteins of Human Gingival Fibroblasts)

  • 김탁;김재호;피성희;김은철;유용욱;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제31권3호
    • /
    • pp.597-610
    • /
    • 2001
  • Normal gingival fibroblasts functioning is fundamental for the maintenance of periodontal connective tissue as well as wound healing. Nicotine have been found to affect DNA synthesis and cell proliferation, which appear to depend on the type of cells. This in vitro study was done to determine the effects of nicotine, a major component of tobacco, on cell proliferation, viability, activity, cell cycle distribution, and expression of cell cycle regulatory proteins in human gingival fibroblasts. Nicotine has been tested for 2 days or 4 days in 5 different concentrations; $0.1{\mu}g/ml$; $1{\mu}g/ml$; $10{\mu}g/ml$; $100{\mu}g/ml$; $1000{\mu}g/ml$. To assess cell proliferation and viability, viable and non-viable cells were counted by hemocytometer; to evaluate cellular activity, MTT assay was employed; to analyze cell cycle distribution, fluorescent propidium iodide-DNA complex were measured using fluorocytometer; to determine the expression of cell cycle regulatory proteins, western blot analysis was performed. After 2 days and 4 days incubation respectively, at concentrations of $1{\mu}g/ml$ - $1000{\mu}g/ml$, nicotine significantly inhibited proliferation comparing to non-supplemented controls. The cell viability was significantly decreased after 2 days and 4 days at concentrations of $1{\mu}g/ml$ - $1000{\mu}g/ml$ and at $10{\mu}g/ml$ - $1000{\mu}g/ml$ respectively. After 2 days and 4 days, the cellular activity was significantly decreased at concentrations of $10{\mu}g/ml$ - $1000{\mu}g/ml$. Treatment with $100{\mu}g/ml$ nicotine for 48 hours caused an increase in the proportion of G1-phase cells (from 46.41% to 53.46%) and a decrease in the proportion of S-phase cells (from 17.80% to 14.27%). The levels of cyclin $D_1$ and CDK 4 proteins in nicotine-treated fibroblasts were lower than that of controls, whereas the levels of p16 and pRB were higher than that of controls. These results suggest that the decrease of cell proliferation and lengthened Gap phases (G1) by nicotine may due to the increased expression of p16 and pRB as well as decreased expression of cyclin $D_1$ and CDK 4 in human gingival fibroblasts.

  • PDF