• Title/Summary/Keyword: Normal Basis

Search Result 1,071, Processing Time 0.023 seconds

A Multiplier for Type k Gaussian Normal Basis (타입 k 가우시안 정규기저를 갖는 유한체의 병렬곱셈 연산기)

  • Kim, Chang-Han;Kim, Sosun;Chang, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.45-58
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier

A New Parallel Multiplier for Type II Optimal Normal Basis (타입 II 최적 정규기저를 갖는 유한체의 새로운 병렬곱셈 연산기)

  • Kim Chang-Han;Jang Sang-Woon;Lim Jong-In;Ji Sung-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in GF($2^m$). In this paper, we propose a new, simpler, parallel multiplier over GF($2^m$) having a type II optimal normal basis, which performs multiplication over GF($2^m$) in the extension field GF($2^{2m}$). The time and area complexity of the proposed multiplier is same as the best of known type II optimal normal basis parallel multiplier.

A Design and Comparison of Finite Field Multipliers over GF($2^m$) (GF($2^m$) 상의 유한체 승산기 설계 및 비교)

  • 김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.799-806
    • /
    • 1991
  • Utilizing dual basis, normal basis, and subfield representation, three different finite field multipliers are presented in this paper. First, we propose an extended dual basis multiplier based on Berlekamp's bit-serial multiplication algorithm. Second, a detailed explanation and design of the Massey-Omura multiplier based on a normal basis representation is described. Third, the multiplication algorithm over GF(($2^{n}$) utilizing subfield is proposed. Especially, three different multipliers are designed over the finite field GF(($2^{4}$) and the complexity of each multiplier is compared with that of others. As a result of comparison, we recognize that the extendd dual basis multiplier requires the smallest number of gates, whereas the subfield multiplier, due to its regularity, simplicity, and modularlity, is easier to implement than the others with respect to higher($m{\ge}8$) order and m/2 subfield order.

  • PDF

AN ALGORITHM FOR PRIMITIVE NORMAL BASIS IN FINITE FIELDS (유한체에서의 원시 정규기저 알고리즘의 구현과 응용에 관한 연구)

  • 임종인;김용태;김윤경;서광석
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1992.11a
    • /
    • pp.127-130
    • /
    • 1992
  • GF(2m) 이론은 switching 이론과 컴퓨터 연산, 오류 정정 부호(error correcting codes), 암호학(cryptography) 등에 대한 폭넓은 응용 때문에 주목을 받아 왔다. 특히 유한체에서의 이산 대수(discrete logarithm)는 one-way 함수의 대표적인 예로서 Massey-Omura Scheme을 비롯한 여러 암호에서 사용하고 있다. 이러한 암호 system에서는 암호화 시간을 동일하게 두면 고속 연산은 유한체의 크기를 크게 할 수 있어 비도(crypto-degree)를 향상시킨다. 따라서 고속 연산의 필요성이 요구된다. 1981년 Massey와 Omura가 정규기저(normal basis)를 이용한 고속 연산 방법을 제시한 이래 Wang, Troung 둥 여러 사람이 이 방법의 구현(implementation) 및 곱셈기(Multiplier)의 설계에 힘써왔다. 1988년 Itoh와 Tsujii는 국제 정보 학회에서 유한체의 역원을 구하는 획기적인 방법을 제시했다. 1987년에 H, W. Lenstra와 Schoof는 유한체의 임의의 확대체는 원시정규기저(primitive normal basis)를 갖는다는 것을 증명하였다. 1991년 Stepanov와 Shparlinskiy는 유한체에서의 원시원소(primitive element), 정규기저를 찾는 고속 연산 알고리즘을 개발하였다. 이 논문에서는 원시 정규기저를 찾는 Algorithm을 구현(Implementation)하고 이것이 응용되는 문제들에 관해서 연구했다.

  • PDF

A D-H type Public Key Distribution System using a Normal Basis GF($2^m$) (GF($2^m$ ) 의 정규기저를 사용한 D-H형 공용키이분배 시스템)

  • 이창순
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 1991
  • several variants of the Diffie-Hellman public key distribution are examined, and a simkple and relatively secure public key distribution protocol is introduced. Using a normal basis of GF(2), this protocol is implemented, and simulated in software. A program is developed, whereby a normal basis is effectively searched for fost multiplication in GF(2).

A CEPHALOMETRIC COMPARATIVE STUDY ON SOFT TISSUE PROFILE BETWEEN NORMAL OCCLUSION AND MALOCCLUSION IN KOREAN ADULTS (한국성인 정상교합자와 부정교합자의 연조직 측모에 관한 두부방사선 계측학적 비교연구)

  • Kang, Hong-Koo;Yoon, Tae-Ho
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.4 no.1
    • /
    • pp.23-36
    • /
    • 1995
  • The purpose of this artic1e is to compare soft tissue profiles between Korean adults with normal occ1usion and malocclusin and to identify the differences between them. The subjects of this cephalometric study were 40 males with normal occlusion(Group 1), 27 females with normal occlusion(Group 2), 28 adults with Angle's Class II malocclusion(Group 3) and 41 adults with Angle's Class III malocclusion(Group 4). The results of this study were as follows ; 1) People with Angle's Class II malocclusion had tendency to have more labial tipping of lower teeth than people with normal occ1usion. Through NOA angle measurement, it was determined that people with Angle's Class II malocclusion had more protruding midface than people with normal occlusion and people with Angle's Class III malocclusion had retruding midface. 2) Through Powell's esthetic triangle analysis, it was determined that people with Angle's Class II malocclusion had retruding chin and protruding nose. 3) No significant differences between people with normal occlusion and maloclusion could be identified by measuring soft tissue profile angle basis of S-NS plane. 4) There were significant differences between groups with normal occlusion and malocclusion by measuring Facial convexity angle(Significance level 99%). 5) By measuring the distance between each landmark basis of N-Pog plane, People with Angle's Class II malocclusion were identified as having more protruding midface, but there were no significant differences between people with normal occlusion and Angle's Class III malocclusion. 6) By measuring the vertical dimension of the face, it was determined that the lower facial height was higher than the upper facial height in all groups, particularly in group with Angle's Class III malocclusion. 7) By measuring the lips basis of E-line and S-line, it was determined that people with Angle's Class III malocclusion had more, protruding lower lips than people with normal occlusion, while people with normal occlusion, while people with Angle's Class II malocclusion had more protruding upper lips. By measuring the distance between the superior sulcus and inferior sulcus basis of H-line, people with Angle's Class II malocclusion had thicker upper lips than the other's.

  • PDF

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields (유한체위에서의 고속 최적정규기저 직렬 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1207-1212
    • /
    • 2013
  • Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

Cellular Automata and It's Applications

  • Lee, Jun-Seok;Cho, Hyun-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.610-619
    • /
    • 2003
  • This paper presents a concept of cellular automata and a modular exponentiation algorithm and implementation of a basic EIGamal encryption by using cellular automata. Nowadays most of modular exponentiation algorithms are implemented by a linear feedback shift register(LFSR), but its structure has disadvantage which is difficult to implement an operation scheme when the basis is changed frequently The proposed algorithm based on a cellular automata in this paper can overcome this shortcomings, and can be effectively applied to the modular exponentiation algorithm by using the characteristic of the parallelism and flexibility of cellular automata. We also propose a new fast multiplier algorithm using the normal basis representation. A new multiplier algorithm based on normal basis is quite fast than the conventional algorithms using standard basis. This application is also applicable to construct operational structures such as multiplication, exponentiation and inversion algorithm for EIGamal cryptosystem.

  • PDF

AN ALGORITHM FOR MULTIPLICATIONS IN F2m

  • Oh, SeYoung;Yoon, ChungSup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.85-96
    • /
    • 2003
  • An efficient algorithm for the multiplication in a binary finite filed using a normal basis representation of $F_{2^m}$ is discussed and proposed for software implementation of elliptic curve cryptography. The algorithm is developed by using the storage scheme of sparse matrices.

  • PDF

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.