Browse > Article

A Multiplier for Type k Gaussian Normal Basis  

Kim, Chang-Han (Dept. of Information Security Semyung, University)
Kim, Sosun (Softforum Co., LTD)
Chang, Nam-Su (Center for Information Security Technologies(CIST), Korea University)
Publication Information
Abstract
In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier
Keywords
유한체 연산;병렬곱셈 연산기;가우시안 정규기저;최적 정규기저;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.A. Hasan, M.Z. Wang, and V.K. Bhargava, 'A modified Massey-Omura parallel multiplier for a class of finite fields', IEEE Trans. vol.42, no.10, pp. 1278-1280, Oct, 1993   DOI   ScienceOn
2 J.L Massey and J.K. Omura, Computational method and apparatus for finite field arithmetic, US Patent No. 4,587,627, to OMNET Assoc., Sunnyvale CA, Washington, D.C.: Patent Trademark Office, 1986
3 IEEE P1363, Standard speciiiauions for public key cryptography, Draft 13, 1999
4 ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft, 1998
5 B. Sunar and C.K. Koc, 'An efficient optimal normal basis type II multiplier', IEEE Trans. vol.50, no.1, pp. 83-88, Jan., 2001   DOI   ScienceOn
6 C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, 'VLSI architectures for computing multiplications and inverses in $GF(2^m)$', IEEE Trans. vol.34, no.8, pp. 709-716, Aug., 1985   DOI   ScienceOn
7 T. Itoh and S. Tsujii, 'Structure of parallel multipliers for a class of fields $GF(2^m)$', Information and Computation, vol.83, pp. 21-40, 1989   DOI
8 C.H. Kim, S. Oh, and J. Lim, 'A new hardware architecture for operations in $GF(2^n)$', IEEE Trans. vol.51, no.1, pp. 90-92, Jan, 2002   DOI   ScienceOn
9 R. Lidl and H. Niederreiter, Introduction to finite fields and its applications, Cambridge Univ. Press, 1994
10 A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of finitr fields, Kluwer Academic, 1993
11 C.K. Koc and B. Sunar, 'Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields', IEEE Trans. vol.47, no.3, pp. 353-356, Mar, 1998   DOI   ScienceOn
12 H. Wu and M.A. Hasan, 'Low Complexity bit-parallel multipliers for a class of finite fields', IEEE Trans. vol.47, no.8, pp. 883-887, Aug., 1998   DOI   ScienceOn
13 S. Gao Jr. and H.W. Lenstra, 'Optimal normal bases', Designs, Codes and Cryptography, vol. 2, pp.315-323, 1992   DOI
14 A. Reyhani-Masolleh and M.H. Hasan, 'Efficient multiplication beyond optimal normal bases', IEEE Trans. vol.52, no.4, pp. 428-439, April, 2003   DOI   ScienceOn
15 A. Reyhani-Masolleh and M.H. Hasan, 'A new construction of Massey-Omura parallel multiplier over $GF(2^m)$', IEEE Trans. vol.51 , no.5, pp. 512-520, May, 2002