• Title/Summary/Keyword: Nonpolar solvents

Search Result 61, Processing Time 0.02 seconds

Introduction of Modifying Solvents to Carbon Dioxide in Supercritical Extractions

  • 이정미정;David J. Chesney
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1351-1355
    • /
    • 1998
  • A simple apparatus for adding a modifying solvent to supercritical CO2 extractant was described. Small, fixed volumes (typically 100 μL) of liquid modifying solvents were delivered during the extraction process by use of an in-line high pressure loop injector and an air pump. Without disconnecting the extraction cell from the supercritical fluid extraction system, the modifying solvent was repeatedly delivered. The solvent modification device was optimized during the extraction of carbaryl and bis(acetylacetonato) copper(Ⅱ). Extraction recoveries from spiked filter paper and soil samples ranged between 22% and 109%, depending on the analyte and matrix components. The addition of polar modifying solvents were necessary to improve the extractability of the nonpolar CO2.

Photophysical Behaviors of Biphenylcarboxylic Acids in Various Solvents; Excited-State Geometry Change and Intramolecular Charge Transfer

  • Yoon Minjoong;Cho Dae Won;Lee Jae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • The solvent-dependent photophysical properties of 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid(4BPCA), which have a pre-twisted conformation in the ground state, have been investigated. The fluorescence spectra of 4BPCA show vibrational structure with a non-mirror image to the absorption spectra in nonpolar solvent while those of 2BPCA show no structure even in nonpolar solvents. As the solvent polarity increases, the fluorescence spectra become diffuse and broad with a strong red shift resulting in the large Stokes shift. The large fluorescence Stokes shift of BPCA's in polar solvent is also partially due to an intramolecular charge transfer (ICT) interaction in the excited state, as demonstrated by the large dipole moment in the excited state (7.6-10.6 D). The fluorescence decay behaviors of BPCA's (decay-times and their pre-exponential factors) also depend on solvent polarity in agreement with the solvent-dependent properties of the steady-state fluorecence. The data have been discussed in terms of change in the excited-state potential energy surface with respect to change of the dihedral angle of biphenyl moiety.

Biophysical study of bioactive-substance conformation and interaction with drugs in solution

  • Yu, Byung-Sul;Lee, Bong-Jin;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.8 no.3
    • /
    • pp.109-117
    • /
    • 1985
  • The interaction of salicylic acid (S. A.), salicylamide (S,M) with nucleic acid base derivatives such as 9-ethyl adenine (A), 1-cyclohexyl uracil (U), 2', 3'-benzylidine-5' trityl-cytidine (C), gaunosine-2', 3', 5'-isobutylate (G) has been spectroscopically investigated to determine the binding mechanism. NMR and IR spectra were measured in nonpolar solvents. The association constant K of the formation of complex was calculated from the IR spectra. Compounds S. A. and A form a 1:1 or 1:2 cyclic hydrogen-bonded complex depending on the sample concentration. Compounds S. A. and U form a 1:1 or 1:2 hydrogen-bonded complex on the sample concentration. Compounds S. A. and C form a 2:1 hydrogen-bonded complex at low concentration (0.0016M). Compound S. A. binds compound G, but its binding does not completely break the self-association of compound G, Compound S. M. binds compounds A. U. C. G. very weakly.

  • PDF

Effects of Polymer Material and Solvent Properties on the Performance of Organic Solvent Nanofiltration Membranes (고분자 소재와 용매특성에 따른 유기용매 나노여과막 성능 분석)

  • Choi, JiHyun;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2022
  • In this work, the solvent permeation and separation performance of organic solvent nanofiltration (OSN) membranes were evaluated. Particularly, the PuraMem (PM) series developed for nonpolar solvents were analyzed and tested in dead-end filtration system. PM membranes exhibited higher permeance for nonpolar solvents compared to polar solvents, and their rejection data did not follow conventional trends with respect to solute size. The data showed that simple solution-diffusion model is not suitable to describe the OSN membrane behavior, and a better solvent-solute-membrane interaction parameter must be developed.

Design of the Artificial Antenna System in Photosynthesis

  • Tamiaki, Hitoshi;Yagai, Shiki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.66-69
    • /
    • 2002
  • Zinc chlorin 1 possessing tertiary 3$^1$_hydroxy and 13$^1$-oxo groups was synthesized as a model for the antenna chlorophylls of photosynthetic green bacteria. Self-aggregation of 1 in nonpolar organic solvents was examined and compared to 2 and 3 possessing a secondary and primary 3$^1$_hydroxy group, respectively. Zinc chlorin 1 self-aggregated in I%(v/v) CH$_2$Cl$_2$-hexane to form oligomers and showed a red-shifted Qy maximum at 704 nm compared to the monomer (648 nm in CH$_2$CI2$_2$). This red-shift is larger than that of 3$^1$S-2 (648 to 697 nm) and comparable to that of3$^1$R-2 (648 to 705 nm), but smaller than that of 1 (648 to 740 nm), indicating that while a single 3$^1$-methyl group (primary to secondary OH) suppressed tight and/or extended aggregation, the additional 3$^1$-methyl group (secondary to tertiary OH) did not further suppress aggregation. The relative stability of the aggregates was in the order 3> 3$^1$R-2∼ 1 > 3$^1$S-2 as determined by visible spectral analyses. Molecular modeling calculations on oligomers of zinc chlorins 1, 3$^1$ R-2 and 3 gave similar well-ordered energy-minimized structures, while 3 stacked more tightly than 3$^1$ R- 2 and 1. In contrast, 3$^1$S-2 gave a relatively disordered (twisted) structure. The calculated oligomeric structures could explain the visible spectral data of 1-3 in nonpolar organic solvents. Moreover, self- aggregation of synthetic zinc 13$^1$_oxo-hlorins 4-6 possessing a 2-hydroxyethyl, 3-hydroxypropyl and 3- hydroxy-I-propenyl group at the 3-position in nonpolar organic solvents was discussed.

  • PDF

Oxidation of Dibenzothiophene Catalyzed by Surfactant-Hemoprotein Complexes in Anhydrous Nonpolar Organic Solvents

  • Ryu, Keun-Garp;Chae, Young-Rae;Kwon, O-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.647-650
    • /
    • 2003
  • In anhydrous organic solvents, the complexes formed between AOT (dodecylbenzene sulfuric acid sodium salt) and hemoproteins, such as hemoglobin, myoglobin, or cytochrome c, displayed remarkably higher activity than the hemoprotein powders to oxidize dibenzothiophene, a model compound of organic sulfurs contained in fossil fuels. In slightly hydrophobic organic solvents, such as ethyl acetate and butyl acetate, dibenzothiophene was completely oxidized catalytically by the cytochrome c-AOT complex with cumene hydroperoxide (${\alpha},{\alpha}-dimethylbenzyl$ hydroperoxide) as an oxidant. In highly hydrophobic organic solvents, such as decane and hexadecane, however, the activity of the cytochrome c-AOT complex decreased, presumably due to the aggregation of the hemoprotein-AOT complex in these solvents.

Synthesis of new Thebaine Derivatives with Phenylsulfonylpropadiene

  • Kim, Keun-Jae;Lee, Jung-Sei
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.129-132
    • /
    • 1989
  • Reactions of thebaine with phenylsulfonylpropadiene in various solvents were investigated. It was found that Diels-Alder reaction adduct was obtained in nonpolar solvent, while addition reaction adduct was obtained in polar solvent. Transformations of these two products were also carried out.

An NMR Study on Complexation of Cesium Ion by p-tert-Butylcalix[6]arene Ethyl Ester

  • Chung, Kee-Choo;Namgoong, Hyun;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.609-616
    • /
    • 2004
  • Complexation of cesium ion by p-tert-butylcalix[6]arene ethyl ester was studied by NMR spectroscopy in nonpolar $CDCl_3$ and polar acetone-$d_6$ and the results were compared with each other. Analysis of temperature dependent $^1H$ spectra and titration curves reveals that both solvents result in a 1 : 1 cone-form complex with nonpolar $CDCl_3$yielding a more tightly bound one than acetone-$d_6$. Unexpectedly, at very low temperature, we have found that two phenyl ring proton peaks of equal intensity appear both in $CDCl_3$and in acetone-$d_6$ solution which gradually collapse and eventually coalesce into a single line as temperature is raised. This observation could be interpreted in terms of the chemical exchange through direct and/or indirect interconversion between two equivalent conformations possible the complex in both solvents over the temperature range observed. And broadening of $^{133}Cs$ (I = 7/2) nmr line with increasing temperature has also been observed, indicating the exchange of $^{133}Cs$ ion between the complex and the solvent. From numerical fitting of lineshape changes for one-dimensional $^1H$ and $^{133}Cs$ spectra, the exchange rate constants and other relevant parameters for this conformational interconversion and the complex-solvent exchange were deduced.

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Dispersions of partially reduced graphene oxide in various organic solvents and polymers

  • Kim, Hye Min;Kim, Seo Gyun;Lee, Heon Sang
    • Carbon letters
    • /
    • v.23
    • /
    • pp.55-62
    • /
    • 2017
  • We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a $4.4^{\circ}C$ increase for poly(methyl methacrylate) and $3.0^{\circ}C$ increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.