• Title/Summary/Keyword: Nonlocal theory

Search Result 444, Processing Time 0.02 seconds

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.

Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • An investigation of the nonlinear thermal buckling behavior of a nano-sized beam constructed from intelligent materials called piezo-magnetic materials has been presented in this article. The nano-sized beam geometry has been considered based on two assumptions: an ideal straight beam and an imperfect beam. For incorporating nano-size impacts, the nano-sized beam formulation has been presented according to nonlocal elasticity. After establishing the governing equations based on classic beam theory and nonlocal elasticity, the nonlinear buckling path has been obtained via Galerkin's method together with an analytical trend. The dependency of buckling path to piezo-magnetic material composition, electro-magnetic fields and geometry imperfectness has been studied in detail.

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini;O. Rahmani;H. Hayati;M. Keshtkar
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.193-210
    • /
    • 2023
  • This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.

Nonlocal heat conduction approach in biological tissue generated by laser irradiation

  • Abbas, Ibrahim A.;Abdalla, Aboelnour;Sapoor, Hussien
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • A novel nonlocal model with one thermal relaxation time is presented to investigates the thermal damages and the temperature in biological tissues generated by laser irradiations. To obtain these models, we used the theory of the non-local continuum proposed by Eringen. The thermal damages to the tissues are assessed completely by the denatured protein ranges using the formulations of Arrhenius. Numerical results for temperature and the thermal damage are graphically presented. The effects nonlocal parameters and the relaxation time on the distributions of physical fields for biological tissues are shown graphically and discussed.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Buckling analysis of perforated nano/microbeams with deformable boundary conditions via nonlocal strain gradient elasticity

  • Ugur Kafkas;Yunus Unal;M. Ozgur Yayli;Busra Uzun
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.339-353
    • /
    • 2023
  • This work aims to present a solution for the buckling behavior of perforated nano/microbeams with deformable boundary conditions using nonlocal strain gradient theory (NLSGT). For the first time, a solution that can provide buckling loads based on the non-local and strain gradient effects of perforated nanostructures on an elastic foundation, while taking into account both deformable and rigid boundary conditions. Stokes' transformation and Fourier series are used to realize this aim and determine the buckling loads under various boundary conditions. We employ the NLSGT to account for size-dependent effects and utilize the Winkler model to formulate the elastic foundation. The buckling behavior of the perforated nano/microbeams restrained with lateral springs at both ends is studied for various parameters such as the number of holes, the length and filling ratio of the perforated beam, the internal length, the nonlocal parameter and the dimensionless foundation parameter. Our results indicate that the number of holes and filling ratio significantly affect the buckling response of perforated nano/microbeams. Increasing the filling ratio increases buckling loads, while increasing the number of holes decreases buckling loads. The effects of the non-local and internal length parameters on the buckling behavior of the perforated nano/microbeams are also discussed. These material length parameters have opposite effects on the variation of buckling loads. This study presents an effective eigenvalue solution based on Stokes' transformation and Fourier series of the restrained nano/microbeams under the effects of elastic medium, perforation parameters, deformable boundaries and nonlocal strain gradient elasticity for the first time.

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.