Browse > Article
http://dx.doi.org/10.12989/sem.2021.78.1.015

Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading  

Fenjan, Raad M. (Al-Mustansiriah University, Engineering Collage)
Ahmed, Ridha A. (Al-Mustansiriah University, Engineering Collage)
Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
Publication Information
Structural Engineering and Mechanics / v.78, no.1, 2021 , pp. 15-22 More about this Journal
Abstract
An investigation of the nonlinear thermal buckling behavior of a nano-sized beam constructed from intelligent materials called piezo-magnetic materials has been presented in this article. The nano-sized beam geometry has been considered based on two assumptions: an ideal straight beam and an imperfect beam. For incorporating nano-size impacts, the nano-sized beam formulation has been presented according to nonlocal elasticity. After establishing the governing equations based on classic beam theory and nonlocal elasticity, the nonlinear buckling path has been obtained via Galerkin's method together with an analytical trend. The dependency of buckling path to piezo-magnetic material composition, electro-magnetic fields and geometry imperfectness has been studied in detail.
Keywords
piezo-magnetic beam; geometry imperfection; thermal post-buckling; piezoelectric reinforcement; nonlocal elasticity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020c), "Porosity effects on postbuckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.   DOI
2 Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020d), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.   DOI
3 Oh, I.K., Han, J.H. and Lee, I. (2000), "Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectric loads", J. Sound Vib., 233(1), 19-40. https://doi.org/10.1006/jsvi.1999.2788.   DOI
4 Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.   DOI
5 Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404.   DOI
6 Zhu, X. and Li, L. (2017a), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030.   DOI
7 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates", Mech. Adv. Mater. Struct., 13(3), 249-266. https://doi.org/10.1080/15376490600582750.   DOI
8 Shen, H.S. (2001), "Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators", Compos. Sci. Technol., 61(13), 1931-1943. https://doi.org/10.1016/S0266-3538(01)00099-9.   DOI
9 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.   DOI
10 Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102.   DOI
11 Varelis, D. and Saravanos, D.A. (2004), "Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates", Int. J. Solid. Struct., 41(5-6), 1519-1538. https://doi.org/10.1016/j.ijsolstr.2003.09.034.   DOI
12 Ansari, R. and Gholami, R. (2016), "Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory", Compos. Part B: Eng., 95, 301-316. https://doi.org/10.1016/j.compositesb.2016.04.002.   DOI
13 Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37(1), 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003.   DOI
14 Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H. and Aifantis, E.C. (2014), "A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating", Appl. Math. Comput., 248, 169-183. https://doi.org/10.1016/j.amc.2014.09.075.   DOI
15 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485   DOI
16 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
17 Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.   DOI
18 Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.   DOI
19 Bohlooly, M. and Malekzadeh Fard, K. (2019), "Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations", J. Appl. Comput. Mech., 5(1), 128-140. https://doi.org/10.22055/jacm.2018.25539.1277.   DOI
20 Bohlooly, M. and Mirzavand, B. (2018), "Postbuckling and deflection response of imperfect piezo-composite plates resting on elastic foundations under in-plane and lateral compression and electro-thermal loading", Mech. Adv. Mater. Struct., 25(3), 192-201. https://doi.org/10.1080/15376494.2016.1255818.   DOI
21 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
22 Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.   DOI
23 Fard, K.M. and Bohlooly, M. (2017), "Postbuckling of piezolaminated cylindrical shells with eccentrically/concentrically stiffeners surrounded by nonlinear elastic foundations", Compos. Struct., 171, 360-369. https://doi.org/10.1016/j.compstruct.2017.03.058.   DOI
24 Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.   DOI
25 Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867. https://doi.org/10.1088/0964-1726/10/5/303.   DOI
26 Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125.   DOI
27 Jia, X.L., Zhang, S.M., Yang, J. and Kitipornchai, S. (2013), "Pull-in instability of electrically actuated poly-SiGe graded micro-beams", Coupl. Syst. Mech., 2(3), 215-230. https://doi.org/10.12989/csm.2013.2.3.215.   DOI
28 Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E: Low Dimens. Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.   DOI
29 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mechanica Sinica, 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3.   DOI
30 Li, L and Hu, Y. (2017a), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097.   DOI
31 Li, L and Hu, Y. (2017b), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.   DOI
32 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020e), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.   DOI
33 Zhu, X. and Li, L. (2017b), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.   DOI
34 Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033.   DOI
35 Li, Y.S., Ma, P. and Wang, W. (2016), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J. Intel. Mater. Syst. Struct., 27(9), 1139-1149. https://doi.org/10.1177%2F1045389X15585899.   DOI
36 Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285.   DOI
37 Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.   DOI
38 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020f), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.   DOI
39 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Eng. Des., 56(3), 181-192. https://doi.org/10.1177%2F0309324720939811.   DOI