Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.2.111

Nonlocal heat conduction approach in biological tissue generated by laser irradiation  

Abbas, Ibrahim A. (Department of Mathematics, Faculty of Science, Sohag University)
Abdalla, Aboelnour (Department of Mathematics, Faculty of Science, Sohag University)
Sapoor, Hussien (Department of Mathematics, Faculty of Science, Sohag University)
Publication Information
Advances in materials Research / v.11, no.2, 2022 , pp. 111-120 More about this Journal
Abstract
A novel nonlocal model with one thermal relaxation time is presented to investigates the thermal damages and the temperature in biological tissues generated by laser irradiations. To obtain these models, we used the theory of the non-local continuum proposed by Eringen. The thermal damages to the tissues are assessed completely by the denatured protein ranges using the formulations of Arrhenius. Numerical results for temperature and the thermal damage are graphically presented. The effects nonlocal parameters and the relaxation time on the distributions of physical fields for biological tissues are shown graphically and discussed.
Keywords
bioheat transfer; laplace transform; living tissues; nonlocal thermoelastic model; thermal relaxation time;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Anya, A.I. and Khan, A. (2019), "Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids", Geomech. Eng., Int. J., 18(6), 605-614. https://doi.org/10.12989/gae.2019.18.6.605   DOI
2 Kumar, R. and Gupta, R.R. (2008), "Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity", Struct. Eng. Mech., Int. J., 30(5), 577-592. https://doi.org/10.12989/sem.2008.30.5.577   DOI
3 Ahmadikia, H., Fazlali, R. and Moradi, A. (2012), "Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue", Int. Commun. Heat Mass Transf., 39(1), 121-130. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.016   DOI
4 Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order gl model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., Int. J., 23(3), 217-225. https://doi.org/10.12989/gae.2020.23.3.217   DOI
5 Charny, C.K. (1992), Mathematical Models of Bioheat Transfer,
6 Dhaliwal, J. (1993), "Uniqueness in generalized nonlocal thermoelasticity", J. Thermal Stress., 16(1), 71-77. https://doi.org/10.1080/01495739308946217   DOI
7 Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0   DOI
8 Eringen, A.C. (1984b), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5   DOI
9 Xu, F., Seffen, K.A. and Lu, T.J. (2008), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Transf., 51(9-10), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024   DOI
10 Eringen, A.C. (1991), "Memory-dependent nonlocal electromagnetic elastic solids and superconductivity", J. Math. Phys., 32(3), 787-796. https://doi.org/https://doi.org/10.1063/1.529372   DOI
11 Hobiny, A.D. and Abbas, I.A. (2021b), "Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes", Struct. Eng. Mech., Int. J., 78(3), 297-303. https://doi.org/10.12989/sem.2021.78.3.297   DOI
12 Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397   DOI
13 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567   DOI
14 Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., Int. J., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369   DOI
15 Lata, P. and Kaur, H. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature", Steel Compos. Struct., Int. J., 38(2), 213-221. https://doi.org/10.12989/scs.2021.38.2.213   DOI
16 Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., Int. J., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141   DOI
17 Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias:= Folia Canariensis Academiae Scientiarum, 8(1), 101-106.
18 Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", JVC/J Vib Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419   DOI
19 Moritz, A.R. and Henriques, F.C. (1947), "Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns", Am. J. Pathol., 23(5), 695-720.
20 Debnath, L. and Bhatta, D. (2014), Integral Transforms and their Applications, Chapman and Hall/CRC.
21 Noroozi, M.J. and Goodarzi, M. (2017), "Nonlinear analysis of a non-Fourier heat conduction problem in a living tissue heated by laser source", Int. J. Biomathe., 10(8). https://doi.org/10.1142/S1793524517501078   DOI
22 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., Int. J., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065   DOI
23 Sarkar, N., Mondal, S. and Othman, M.I.A. (2020b), "Effect of the laser pulse on transient waves in a nonlocal thermoelastic medium under Green-Naghdi theory", Struct. Eng. Mech., Int. J., 74(4), 471-479. https://doi.org/10.12989/sem.2020.74.4.471   DOI
24 Saeed, T. and Abbas, I. (2020), "Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data", Mech. Based Des. Struct. Mach. https://doi.org/10.1080/15397734.2020.1749068   DOI
25 Sarkar, N. (2020), "Thermoelastic responses of a finite rod due to nonlocal heat conduction", Acta Mech., 231(3), 947-955. https://doi.org/10.1007/s00707-019-02583-9   DOI
26 Sarkar, N., De, S. and Sarkar, N. (2019), "Waves in nonlocal thermoelastic solids of type II", J. Thermal Stress., 42(9), 1153-1170. https://doi.org/10.1080/01495739.2019.1618760   DOI
27 Sharma, D.K., Bachher, M., Manna, S. and Sarkar, N. (2020), "Vibration analysis of functionally graded thermoelastic nonlocal sphere with dual-phase-lag effect", Acta Mech., 231(5), 1765-1781. https://doi.org/10.1007/s00707-020-02612-y   DOI
28 Wang, J. and Dhaliwal, R.S. (1993), "On some theorems in the nonlocal theory of micropolar elasticity", Int. J. Solids Struct., 30(10), 1331-1338. https://doi.org/10.1016/0020-7683(93)90215-S   DOI
29 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   DOI
30 Kumar, D. and Rai, K.N. (2020), "Three-phase-lag bioheat transfer model and its validation with experimental data", Mech. Based Des. Struct. Mach. https://doi.org/10.1080/15397734.2020.1779741   DOI
31 Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3). https://doi.org/10.1063/1.4914912   DOI
32 Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperatures in the resting human forearm", J. Appl. Physiol., 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93   DOI
33 Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3). https://doi.org/10.3390/SYM12030488   DOI
34 Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969   DOI
35 Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, K.S. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. https://doi.org/10.3390/E22101070   DOI
36 Ezzat, M.A. (2020), "Modeling of gn type III with MDD for a thermoelectric solid subjected to a moving heat source", Geomech. Eng., Int. J., 23(4), 393-403. https://doi.org/10.12989/gae.2020.23.4.393   DOI
37 Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., Int. J., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109   DOI
38 Sarkar, N., Bachher, M., Das, N., De, S. and Sarkar, N. (2020a), "Waves in nonlocal thermoelastic solids of type III", ZAMM Z. Angew. Math. Mech., 100(4). https://doi.org/10.1002/zamm.201900074   DOI
39 Eringen, A.C. (1984a), "Electrodynamics of memory-dependent nonlocal elastic continua", J. Math. Phys., 25(11), 3235-3249. https://doi.org/10.1063/1.526070   DOI
40 Eringen, A.C. (2012), Microcontinuum field theories: I. Foundations and solids, Springer Science & Business Media.
41 Ezzat, M.A. and El-Bary, A.A. (2017), "Fractional magneto-Thermoelastic materials with phase-lag GreenNaghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297   DOI
42 Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convecti ve heat transfer and flow characteristics synthesis by Cu-Ag/Water hybrid-nanofluids", Heat Transfer Res., 49(18), 1837-1848. https://doi.org/10.1615/HeatTransRes.2018025569   DOI
43 Henriques Jr, F. and Moritz, A. (1947), "Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation", Am. J. Pathol., 23(4), 530.
44 Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., Int. J., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085   DOI
45 Hobiny, A. and Abbas, I. (2021a), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055   DOI
46 Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C. and Vanoli, G.P. (2019), "Modeling Heat Transfer in Tumors: A Review of Thermal Therapies", Annals Biomed. Eng., 47(3), 676-693. https://doi.org/10.1007/s10439-018-02177-x   DOI
47 Hosseini, S.M. (2020), "A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation", Struct. Eng. Mech., Int. J., 73(3), 287-302. https://doi.org/10.12989/sem.2020.73.3.287   DOI
48 Gardner, C.M., Jacques, S.L. and Welch, A.J. (1996), "Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon Monte Carlo simulation", Lasers Surgery Med.: Official J. Am. Soc. Laser Med. Surgery, 18(2), 129-138. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2   DOI