• Title/Summary/Keyword: Nonlinear turbulence model

Search Result 57, Processing Time 0.026 seconds

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.

Numerical Simulation of a Conical Diffuser Using the Nonlinear $k-{\epsilon}$ Turbulence Model (비선형 $k-{\epsilon}$ 난류모델에 의한 원추형 디퓨저 유동해석)

  • Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1998
  • A diffuser, an important equipment to change kinetic energy into pressure energy, has been studied for a long time. Though experimental and theoretical researches have been done, the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned, various numerical studies have also been done. On the contrary, many turbulence models have constraint to the applicability of diffuser-like complex flows, because of anisotropy of turbulence near the wall and of local nonequilibrium induced by an adverse pressure gradient. The existing $k-{\epsilon}$ turbulence models have some problems in the case of being applied to complex turbulent flows. The purpose of this paper is to test the applicability of the nonlinear $k-{\epsilon}$ model concerning diffuser-like flows with expansion and streamline curvature. The results show that the nonlinear $k-{\epsilon}$ turbulence model predicted well the coefficient of pressure, velocity profiles and turbulent kinetic energy distributions, however the shear stress prediction was failed.

  • PDF

Some Validation of Nonlinear ${\kappa}-{\varepsilon}$ Models on Predicting Noncircular Duct Flows

  • Myong H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.43-45
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain for nonlinear${\kappa}-{\varepsilon}$ turbulence models is validated theoretically by using the boundary layer assumptions against the turbulence­driven secondary flows in noncircular ducts and then the prediction performance for several nonlinear models is evaluated numerically through the application to the turbulent flow in a square duct.

  • PDF

Evaluation of Nonlinear κ-ε Models on Prediction Performance of Turbulence-Driven Secondary Flows (난류에 의해 야기되는 이차유동 예측성능에 대한 비선형 κ-ε 난류모델의 평가)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1150-1157
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear k-$\varepsilon$models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear k-$\varepsilon$ model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model (점모형을 이용한 조류와 취송류의 비선형 상호작용)

  • 이종찬;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The influence of vertical eddy viscosity to the nonlinear interaction of tidal current and wind-induced current is examined using a point model. A zero-equation turbulence model is derived by simplifying the q$^2$-q$^2$1 turbulence model under the assumption that the generation of turbulence kinetic energy is balanced with its dissipation and is further modified to include the depth of frictional influence properly The zero-equation turbulence model is derived and the possibility of resonance in the presence of Coriolis effect is suggested. The amplitudes of tidal currents remain the same regardless of the applied wind stress, but the over-tide component is generated due to the nonlinear interaction of tidal current and wind-induced current. Significant changes in the vertical profile of wind-induced currents can occur according to tide-induced background turbulence. The turbulence model can give rise to misleading results when applied to the wind-driven circulation in the tide-dominated sea such as Yellow Sea unless the tide-induced background turbulence is adequately included in the parameterization of vertical eddy viscosity.

  • PDF

Development of a Nonlinear Near-Wall Model for Turbulent Flow and Heat Transfer (난류유동 및 대류열전달에 대한 비선형 난류모형의 개발)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1569-1580
    • /
    • 2001
  • A new nonlinear near-wall turbulence model is developed to predict turbulent flow and heat transfer in strongly nonequilibrium flows. The k-$\varepsilon$-f$\sub$${\mu}$/, model of Park and Sung$\^$(1)/ is extended to a nonlinear formulation. The stress-strain relationship is the thrid-order in the mean velocity gradients. The strain dependent coefficients are obatined from the realizability constraints and the singular behavior at large strains. An improved explicit heat flux model is proposed with the aid of Cayley-Hamilton theorem. This new model includes the quadratic effects of flow deformations. The near-wall asymptotic behavior is incorporated by modifying the f$\sub$λ/ function. The model performance is shown to be satisfactory.

CFD Simulation of Axial Turbulent Flow in a Triangular Rod Bundle

  • In W.K.;Chun T. H.;Myong H. K;Ko K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.71-73
    • /
    • 2003
  • A CFD analysis has been made for fully developed turbulent flows in a triangular bare rod bundle with pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence­driven secondary flow in the triangular subchannel. The nonlinear quadratic $\kappa-\omega$ models by Speziale and Myong-Kasagi predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic $\kappa-\omega$ models by Shih et al. and Craft et al. showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model appeared to overpredict the turbulence anisotropy in the rod bundle.

  • PDF

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Prediction of Turbulent Flow in a Square Duct with Nonlinear ${\kappa}-{\epsilon}$ Models (비선형 ${\kappa}-{\epsilon}$ 난류모델에 따른 정사각형 덕트내 난류유동 예측)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1980-1985
    • /
    • 2003
  • Two nonlinear ${\kappa}-{\epsilon}$ models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear ${\kappa}-{\epsilon}$ model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear ${\kappa}-{\epsilon}$ model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF