• Title/Summary/Keyword: Nonlinear robust control

Search Result 700, Processing Time 0.026 seconds

Design of a Boiler-Turbine Control System Using a Modified LQG/LTR Method (개선된 LQG/LTR방법에 의한 보일러-터빈제어 시스템의 설계)

  • 권욱현;김상우;박부견;김은기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.199-209
    • /
    • 1990
  • In this paper, a multivariable robust controller for a boiler-burbine system is designed by using a modified LQG/LTR method. From the known nonlinear dynamic model, a linearized model is obtained with the saturations at both input magnitude and input varying rate. The modeling error is analyzed at various operation points. A new dynamics augmentation method in the LQG/LTR method is suggested which can be applied to LQG/LTR method to reject the input and output disturbances and to follow reference inputs under modeling errors. The good performance of the designed controller is shown by simulations in various conditions.

  • PDF

A Study on the Robust Nonlinear Controller Design Using T-S Fuzzy Model and GA (T-S 퍼지 모델과 GA를 이용한 강인한 비선형 제어기의 설계에 관한 연구)

  • Kang, Hyeong-Jin;Kwon, Cheol;Lee, Yang-Hui;Park, Min-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.77-80
    • /
    • 1997
  • In this paper, we propose a new fitnesness function of GA for slowly time-varying plant. Previous Takgi-Sugeno model based controller is used as basic control scheme and Controller parameters are tuned by GA with the proposed fitness function includes the information of model parameter variation and has better performance robustness than the previous ones. We illustrate the effectiveness of the proposed fitness function by simple simulation example.

  • PDF

Robust control of End order deadbeat current controller considering calculation time delay for UPS inverter (연산시간지연을 고려한 UPS 인버터용 2차 데드비트 전류 제어기의 강인 제어)

  • Kim, Byoung-Jin;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1056-1058
    • /
    • 2000
  • Deadbeat technique has been proposed as a digital controller for an UPS inverter to achieve the fast response to a load variation and to conserve a very low THD under a nonlinear load condition. This scheme contains a fatal drawback, sensitivity against parameter variation and calculation time delay. This paper proposes a second order deadbeat current controller, which fundamentally solves the calculation time delay problem and certainly guarantees the robustness of the parameter's variation. This is shown theoretically and practically through simulation and experiment.

  • PDF

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

Design of The Robust Fuzzy Controller Using State Feedback Gain (상태궤환이득을 이용한 강건한 퍼지 제어기의 설계)

  • 홍대승
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.496-508
    • /
    • 1999
  • Fuzzy System which are based on membership functions and rules can control nonlinear uncertain complex systems well. However Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm it takes long time to converge into global optimal parameters. Well-developed linear system theory should not be replaced by FLC but instead it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

A Robust Observer Design of Ma4gentic Levitation System using Sliding Mode Method (슬라이딩모드기법을 이용한 자기부상시스템의 강인한 관측기 설계)

  • 이대종;김주식;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents a sliding mode observer and Controller far the state estimation and the dynamic stabilization of the magnetic levitation systems. The proposed striding mode observer is constructed by means of Lyapunov stability theorem to decrease the observer error, and the sliding rode controller is designed by a linear combination of the equivalent and nonlinear control input for the estimated states. The feasibilities of the suggested design method are illustrated with the simulation results.

Improvement of the Robustness Bounds of the Linear Systems with Structured Uncertainties (구조화된 불확실성의 비선형요소를 갖는 선형 시스템의 강인영역 개선)

  • Jo, Jang-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this paper is the derivation and development of the new definitions and methods for the new estimation of robustness for the systems having structured uncertainties. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. The systems considered are assumed to be nominally linear, with time-variant, nonlinear bounded perturbations. This new techniques demonstrate the improvement of robustness bounds from the numerical results.

  • PDF

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

Design of Tone-Controlled CI/OFDM Communication System and Improvement of BER Performance by IMD Reduction (톤 제어 방식의 CI/OFDM 통신 시스템 설계와 IMD 저감을 이용한 BER 성능 향상)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.363-371
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) is very effective forhigh data rate transmission system. However, communication performance becomes worse because of nonlinear distortion resulting from the PAPR. In this paper, we like to propose a tone-controlled CI/OFDM system including the TMD (inter-modulation distortion) reduction method in order to improve the BER performance. In this tone-controlled CI/OFDM system, control tone is additionally inserted in each data symbol of CI/OFDM system to make the CI/OFDM lower the PAPR and robust to nonlinear distortion. So, tone-controlled CI/OFDM using the IMD reduction method shows better BER (bit error rate) performance than methods based on PAPR reduction.