• 제목/요약/키워드: Nonlinear observer design

검색결과 222건 처리시간 0.024초

출력관측 오차의 필터링을 이용한 비선형 계통의 강인한 신경망 관측기 설계 (Robust Adaptive Neural-Net Observer for Nonlinear Systems Using Filtering of Output Estimation Error)

  • 박장현;윤필상;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2320-2322
    • /
    • 2001
  • This paper describes the design of a robust adaptive neural-net(NN) observer for uncertain nonlinear dynamical system. The Lyapunov synthesis approach is used to guarantee a uniform ultimate boundedness property of the state estimation error, as well as of all other signals in the closed-loop system. Especially, for reducing the dynamic oder of the observer, we propose a new method in which no strictly positive real(SPR) condition is needed with on-line estimation of weights of the NNs. No a priori knowledge of an upper bounds on the uncertain terms is required. The theoretical results are illustrated through a simulation example.

  • PDF

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

인간형 로봇의 안정성을 위한 백래쉬 보상기 구현 (Implementation of Backlash Compensator for Stability of a Humanoid Robot)

  • 정병재;공정식;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.681-683
    • /
    • 2004
  • This paper describes the control of a geared DC motor having a backlash for implementation of a humanoid robot using disturbance observer. Critical problem of the humanoid robot is caused by the nonlinearity such as a backlash. To meet this problem, a control method using disturbance observer has been proposed. The disturbance observer is designed to estimate the effects of nonlinearities in the system, to make the nonlinear system behave linearly. To design the low-pass filter in the disturbance observer, cut-off frequency of the output should be found. The goal of this paper is the implementation of the proposed system, compensating the backlash effect. To accomplish the goat, PD control and disturbance observer are employed to the system with no load and full load. As a result, system stability can be guaranteed by compensating the effect of backlash. In addition, real experiment shows the proposed control methodology will satisfy the stable working of a humanoid type in the future.

  • PDF

관측기를 이용한 위치제어 유압 서어보 시스템의 과도응답 특성 개선 (I) (Improvement of Transient Response Charateristics of a Position Control Hydraulic Servosystem Using Observer (I))

  • 이교일;조승호
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.781-788
    • /
    • 1987
  • 본 연구에서는 제어대상으로 설정된 유압서어보 시스템은 비선형 시스템이므 로, 실제로 측정한 상태변수와 관측기에서 추정한 상태변수를 비교하여 이들이 서로 일치하는 것을 보임으로써 관측기에서 추정한 다른 상태변수들에 대한 신뢰도를 높일 수 있다. 따라서 본논문에서는 전차수 관측기를 사용한 경우에 대하여 고찰한다.

PMSM의 위치 및 속도 센서리스 벡터제어를 위한 관측기의 설계 (Design of an Observer for Position and Speed Sensorless Vector Control of PMSM)

  • 정동화
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.54-63
    • /
    • 1998
  • This paper proposes a theoretical analysis of a closed loop adaptive speed control system for control the inverter driven permanent magnet synchronous motor(PMSM). This control system utilizes a mechanically sensorless state observer for the generation of all controller feedback information. The observer processes measurements of stator frame voltage and current to produce estimates of rotor position and speed and rotor frame currents. It is shown that the identity observer, when properly formulated, has the same linearized error dynamics as the extended kalman filter(EKF). Consequently, it is shown that the gains within the identity observer can be designed in a manner identical to that of the EKF. In this way, the designability of the nonlinear observer is assured, as is the optimality of its performance for small errors. A sequence of simulation are performed and they demonstrate the successful performance.

  • PDF

최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계 (Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

슬라이딩 모드 축차 관측기를 이용한 유도 전동기 속도추정 (A Rotor Speed Estimation of Induction Motors Using Sliding Mode Cascade Observer)

  • 김응석
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.145-153
    • /
    • 2004
  • A nonlinear adaptive speed observer is designed for the sensorless control of induction motors. In order to design the speed observer, the measurements of the stator currents and the estimates of the rotor fluxes are used. The sliding mode cascade observer is designed to estimate the time derivatives of the stator currents. The open-loop observer is designed to estimate the rotor fluxes and its time derivatives using the stator current derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed is calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameters converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The simulation examples are represented to investigate the validity of the proposed observers for the sensorless control of induction motors.

강인한 고이득 관측기 설계 및 안정성 해석 (Lyapunov Based Stability Analysis and Design of A Robust High-Gain Observer)

  • 유성훈;현창호
    • 전자공학회논문지SC
    • /
    • 제47권2호
    • /
    • pp.8-15
    • /
    • 2010
  • 본 논문은 비선형 시스템에 대하여 강인한 고이득 관측기 설계 방법을 제안하였고 그것의 안정성을 리아푸노프 이론을 기반으로 분석하였다. 그 시스템의 상태는 측정 할 수 없다고 가정하였다. 제안된 고이득 관측기는 역학식에 추정 오차의 적분을 포함한다. 그것은 고이득 관측기의 성능을 향성시키고 제안된 관측기가 잡음, 불확실성, 피킹 현상과 같은 것들에 대해 강인하도록 만든다. 그것의 안정성은 리아푸노프 방법에 의해 분석된다. 이를 출력 되먹임 제어기에 적용하였고 모의실험 결과를 통해 기존의 관측기기반의 출력 되먹임 제어기, 상태 되먹임 제어기와 비교하여 제안된 방법의 효율성을 증명하였다.

차량 동역학 제어기를 위한 노면 마찰계수 및 차체 미끄럼각 추정기 설계 (Estimator Design for Road Friction Coefficient and Body Sideslip Angle for Use in Vehicle Dynamics Control Systems)

  • 박기홍;허승진;백인호;이경수
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.176-184
    • /
    • 2001
  • The VDC(Vehicle Dynamics Control) is a control system whose target is to improve vehicle stability under critical motion. The system has a good potential of becoming a standard active safety unit in passenger vehicles since it can be implemented on top of the ABS/TCS system with little extra cost. This, however, is possible only when the signals that the VDC system demands can be obtained with sufficient accuracy. In this research, estimators for the road friction coefficient and body sideslip angle have been designed. The two variables have great influence upon performance of the VDC system but not directly measurable. For the estimator design, the Newton method and the nonlinear observer theory have been exploited. The performance of the estimator have been verified via simulations on critical driving conditions.

  • PDF

On the Design of the Observers of the Nonlinear System

  • Roh, Dong-Hwi;Park, Se-Yeon;Ryu, Dong-Young;Lee, Hong-Gi
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.653-658
    • /
    • 2001
  • In this paper, we find the necessary and sufficient conditions for the discrete time nonlinear system to be transformed into observable canonical form by state coordinates change. Unlike the continuous time case, our theorems give the desired state coordinates change without solving partial differential equations. Also, our approach is applicable to both autonomous systems and control systems by slight change of the definition of the vector field.

  • PDF