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On the Design of the Observers of the Nonlinear Systems
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Abstract

In this paper, we find the necessary and sufficient conditions for the discrete time nonlinear system to be transformed
into observable canonical form by state coordinates change. Unlike the continuous time case, our theorems give the
desired state coordinates change without solving partial differential equations. Also, our approach is applicable to both
autonomous systems and control systems by slight change of the definition of the vector field.
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1. Introduction

Modern control of the nonlinear systems usually
exploits the state feedback and state coordinate change.
Since the states of the system are not always available,
the observer is needed to control the systems. Unlike the
linear case, the observer design for nonlinear systems is
not simple. One way of the observer design is to use the
same scheme as the linear one together with the state
transformation.

Consider the following continuous and discrete
autonomous nonlinear systems:

x=Rx) (1.1a)
y=h(x) (1.1b)
x(t+1) = Ax(1)) (1.2a)
y=h(x(1) (1.2b)

where Ax) and A(x) are smooth functions and x=R”"
and yeR with A0)=0 and #(0)=0. Suppose that there
exists a state coordinate change z= S(x) which transforms
the above system into the following observable linear
systems:

z=Az+ 1y (1.33)
y=Cz (1.3b)
2(t+1)= Az(D + A(8) (1.4a)
W= Czh (1.4b)

Then we can easily obtain the observer
2=(A+ GOz~ Gy+ 1) (1.5
2(t+1)=(A+ GO z(H) — G H + r(3(¥) (1.6)
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If we let e(H= z()—2(D, we obtain

e=(A+GOe
e(t+1)=(A+ GO e(d)

1.7
(1.8

and 13{2 (=0 by choosing an appropriate matrix G.

That is, if we can transform the nonlinear system (1.1)
and (1.2) into almost linear svstem (1.3) and (1.4), then
we can use the linear system theory to find an observer
(1.5) and (1.6) for the system (1.3) and (1.4). The system
(15) and (1.6) can also be observers of system (1.1) and

(1.2) with additional map ()= S"'(z(#).

Similar arguments can be applied for control systems.
Consider the following continuous and discrete nonlinear
control systems:

x=Ax)+ g xu (1.9a)
y=h(x) (1.9b)
x(t+1) = A2, (D) (1.10a)
y=h(x(t)) (1.10b)

where f, g, and % are smooth functions and xeR” and
yeR with A0)=0 and #(0)=0. Suppose that there
exists a state coordinate change z= S(x) which transforms
the above system into the following observable linear
systems:

z=Az+ y, w (1.11a)
y=Cz (1.11b)
2(t+ 1) = Az() + A¥D, u(D) (1.12a)
W= Ce(d) (1.12b)

Thus we can easily obtain the observer
z=(A+ GO z— Gy+ 1) (1.13)
Z(t++1)=(A+ GO ) — GKD + H(KD) (1.14)

Since the first attempt in this direction was made by
Krener and Isidori[1], many authors[2-9] have studied
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this problem. For continuous time systems the results
are well summarized in [11]. For discrete time system
Lee and Nam[6] obtained the conditions when the
Jacobian of the vector field is nonsingular. Also, Lin and
Byres[8] gave the algebraic conditions for discrete time
autonomous systems. In [9], Moraal and Grizzle used a
totally different approach of observer design from the
others.

In this paper we obtain, in section 2, the discrete
version of the results in [11] which is a geometric
condition for continuous time systems, without any
assumption. We show that our approach to autonomous
system 1s also applicable to the systems with input by
slight modification. Some illustrating examples are
presented in section 3. Finally, conclusions are included
in section 4.

The notations and definitions which are not clear in
this paper can be found in [11-14).

2. Geometric Conditions for discrete time
systems

In this section we state the geometric conditions for
continuous time systems and we find the discrete
version of those.

Theorem 1[10] : Consider continuous time nonlinear
autonomous system (1.1). There exists a state coordinate
change z= S(x) transforming system (1.1) into a linear
observer form

0000 7n(y)
a= |10 0 0y ) (21a)
0010 YY)
y=[00 0 1]z (2.1b)
if and only if
Q) rank{dh, dLh, -+, dL} ‘B =n,
(i) [adH(x), ad/(0)]=0, 0<i,j<n—1,
with #(x) being the vector field solution of
<dh,r> 0
(2.2)

AL | T |0
<AL h, vy 1

Theorem 2[10] : Consider continuous time nonlinear
control system (1.9). There exists a state coordinate
change z= S(x) transforming system (1.9) into a linear
observer form

0 0« 00 7y, w)
S R B L I
00 10 7y, u)
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y=[00 - 0 1]z (2.3b)

if and only if
() rank{dh, dLh, -, dL} 'R =n,
(i) [adi(x), adr(2)]=0, 0<i,j<n—1,
(iil) [g, adm{(x)]1=0, 0<j<n—2,

with #{x) being the vector field solution of (2.2).

We now turn our attention to discrete time autonomous
system (1.2) in order to find the discrete version of
Theorem 1. For the discrete time system, we define the
following notation:

F' (x, w)= F(x, w)
F G, w)=F(F (%, w),0), ¢£>2
We assume that
rank {dh, d(h - D, =, dh- D) =n (24

Under this assumption we define the vector field
F(x,w:R""'—R" by

(2.5a)
(2.5b)

e Fllunw=hfx), 1<i<n—1
he F'(x,)=h- " (ND+w

Vector field F(x, w) plays the same role as the vector
field #(x) in Theorem 1 and can be found by solving
algebraic equation (2.5) or by the following procedure:

Under the assumption (2.4), consider state coordinate
change

he f”fl(x)

h- }(x)
h(x)

£= = S(x) (26)

and obtain the dynamic equation for the new state &

a8
t+1)= = R&(D) (27a)

’ En*?

Enfl
wWH=&,(8 (2.7b)

Now the vector field
w

() =R3x) + | Y 2.8)

0
will satisfies (2.5).
Now we define the following composite functions:

F (8, w( D)2 F(a( £), ul D) (2.9a)

E ), ()2 FCF 7 (D, w(D),0), i=z2  (2.9b)
?(wl’ wZ’_‘_’wn-H)

. éF(F(F(O, wn+1)’wn)"“,w1) (2103)

Wt s o w2 F (wlwl, o, w,0) (2.10)

= F(--F(F(0, w"),w”“l),...‘wl)



Theorem 3 : Consider discrete time nonlinear autonomous
system (1.2). There exists a state coordinate change
z=S(x) transforming system (1.2) into a linear observer
form

0000 71((8)
=1 0 0 0hay | 7l (2.11a)
0010 74(3)
wH=[00 - 0 12 (2.11b)
if and only if
() rank{dk, dLh, -, dL} ‘B =mn,

(ii) 7(3‘310— ), 1<i<n are well-defined vector fields.

Furthermore, &=S(x)=¥ Yx) is a desired state

coordinates change.

Proof:

(Necessity); Suppose that there exists z= S(x) which
satisfies (2.11). Condition (i) is obvious since the
observability is invariant under state coordinates change.
By (2.4), it is easy to see that

2, = h(x) (2.12a)
a=h @S rea e S @) 7 (M)
e *(x)—}‘fml(h 1), 1=isn—1
(2.12b)
B D~ B v G S D) = n(H) =0 (2120)

From this relationship and (2.5), we obtain
z;° Flx, w)
=he " {F(x, w)— Siw a1(he fTHF(x, w))
—he PR = By e £ )
=z +rih(x), 2<i<n
2, Fx, w)
=k S EG )~ 2y ik ST W)

=k P 0= 2y he ()
=nlh(x))+w

Now, if we let

F(z,w)=S- F(S™(2), wyor
Fx,w)=S""'- F(Sx),w),
it follows
00 00 ri(z2,) 1
Flz,w) =] 0 0 0} 4 72(2") + 0 w
66--310 izl 1o
=Apz+ry)+bw
Therefore it is easy to see that
wZ
; 3
FC-FCFRO, 0", 0", ub)= w
w;z+l
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ntl

F( FO0. 0", "),

n-H)

F (w',
=F(

w'+ 7 (w
_ | vt rlw

L wh)
n+l)

wn+ 7,n(u}n-f-l)

which implies F. (—) 1<i<#% are well-defined vector
fields. Since
n+l>: Sfl . ? (wl’ w2,_“, wn+1),

F(w', wh, o, w

condition (ii) is satisfied.
(Sufficiency): Suppose that condition (i) and (i) are
satisfied. Let &= S(x)= ¥ (x) and

o, w
w)

t+1) =¥t
(&,

If we let
Y=F.(-2L), 1<i<n,
ow

then {Y', Y% -, Y} are linearly independent vector fields
and it is easy to see that

v=7.(Ln=wo Lo, 1sizn,

Since F(¥(€), w)=F(w,£), £€R”", we obtain
F&w.(L) = Rwg,w)(L)

= (" F(w, s>>.<~"—w>
=(F Y= aE

Similarly, we can show that

P w(Hg) =(F " Fw,)(H2)

— ( w- l)*yviﬁ»l
__0 o
T 0& Isi=n—1
Therefore we have
u)+ 71(511)
Flew=| §Tn&) (2.13)
Enort 7’1(&)
Also note that by (2.5),
he Fow=rh- 70, 1<i<n—1 (214a)
he Fr,w=1h- F)+w (2.14b)
Lje Flrw=0, 1sisa—1 (2.15a)
2 5. -
F” he F(&w=1 (2.15b)
which implies
y=m¥(O)= (&) =¢, (2.16)

Therefore, by (2.13) and (2.14), it is easy to see that
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71(671)
o= &t 7_’1(571)

Eny +.71(En)

(2.17)

Same arguments can be applied for discrete time
control system (1.10) in order to find the discrete version
of Theorem 2. We assume that

rank {dh, d(h - F(x,0)),, dlh > 7' (x,00}=n
Under this assumption we define the vector field

Flx,u,w):R"" 2 —>R" by

(2.18a)
(2.18b)

he Fr,uwy=h- Flx,w), 1<i<n—1
he F'(x,u,w)=h- T{x,w)+w

Here we use the following definition:

B (x, u, w)= F(x, u, w)
F'Gru,w)=FC B ", u, w),0,0), 222

Now we define the following composite functions:

F(w', wh -, w" W)

éF(F(F(O,O, w”“),O,w”),---), u, wl) (219&)
w‘(wl,u)Z’...,w”) ‘
2F (w', w’, -, w",0,0) (2.19b)

= F(---F(F(0,0, 0,0, 0" %), ),0,w")

Theorem 4 : Consider discrete time nonlinear autonomous
system (1.10). There exists a state coordinate change
z=S(x) transforming system (1.10) into a linear observer
form

00 - 00 1y, )
arn=|1 00 Qe |29 @200
0010 Vn(J.J,u)

wH=[00 - 0 1]2(d (2.20b)

if and only if
() rank{dn,d(h- F(x,00,.dh- 7 '(x,00)}=n

i) F '(”aiu—")’ 1<:<n are well-defined vector fields.

Furthermmore, &= S(x)= ¥ '(x) is a desired state coordinates
change.

The proof of Theorem 4 is almost the same as that of
Theorem 3. Thus it will be omitted.

Condition (ii) of Theorem 3 and 4 can be easily checked
by the following equivalent condition:

()" [

9 - ker(FD)ICker (F,), 1<i<n
Jw

3. Examples

In this section, a couple of examples are given to
explain the effectiveness of our conditions and scheme.
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Example 1 : Consider the following discrete time nonlinear
autonomous system:

x,(t+1) 0
2(t+ D = |2 (D)+ x5 (D — x3( D]
x3(f+1) 1o ) — x3(D*

WD =2, (D +x3() = h(x(D)
Then, since
h=x,+ x3,
he f= xz—xg,
he f2 = X1,

observability condition (i) is satisfied. Alsoc by (2.5)
vector field F(x, w) satisfies the following equations:

Fi+Fy=x,— x5

Fy—F5=x,
Fi=w,
Thus we have
w
F= x1+(x2—x§"w)2
xz—x§~w

From this, we obtain the following composite functions:
w4
(w')?

F0,w") =

w3
w4 + (w3)2

F(F0,wh, w) =

2
w3+(w4~w2)2
w —w

W', o, w) =F(F(F(O,lw3),wz),wl)

FOF(FQO, w"), w), w?) =

w
w2+(w3‘w1)2
w— w!
F(w', w?, w’, wh =F(F(F(F1(0,w4),w3),w2),w1)

= | W+ (w® — wh)?

W —
Since
3 1 0 0 0
‘ﬁff = l-Z(ws*wl) 1 2(w®~wh 0
-1 0 1 0
we can get
0
ker (F .) = span{ aw4}

which implies that
[ﬁ,ker(?,)]Cker(F.), 1<i<3

Therefore, condition (ii) of Theorem 3 is satisfied.
Also, the desired state coordinates change is



X1
2
X2 X3
x1+x3

z2=8(x)=¥ Yx)=

and the new states of the system satisfies the following
observer canonical form:

000
z(t+l)=[100
010

HH=[0 0 1]12(¥

Example 2 : Consider the following discrete time nonlinear
control system:

[xl(t+ 1)] _ [xf 1—1 u2] = fx, u)

2(8)

}Cz( t+ 1)
(&) = 2,(8) = h(x(D)
Then, since

h=JC2,
hoe f= x1,

observability condition (i) is satisfied. Also by (2.18)
vector field F(x, w) satisfies the following equations:

F2=x1
Fi=xt+u*+w,
Thus we have

F= B+ +w
X1

From this, we obtain the following composite functions:
Ww', w?) = F(F0,0,w"),0,w")
:[ (w2)22+ wl]
w

F(w', wh, w’) = F(F(F(F0,0,w),0, %), u,10')
=[ [+ wf1?+ uP + wl]

(u®)? + w?
Since
_a F = [ 1202+ ] 46’ (u) 2+ wz]]
ow 0 1 2w’
we can get
_ _9,3_0 J
ker(.‘f.)—sﬁan{ 2w awz + aws }

which implies that

(=2, ker(F )ICker (F.), 1<i<2=n
Jw

Therefore, condition (ii) of Theorem 3 is satisfied.
Also, the desired state coordinates change is

z= S(x)= lﬂ"‘(x)=[x1x_2x§]

and the new states of the system satisfies the following
observer canonical form:
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sev=[8 o [ 48

=10 112()

4. Conclusions

In this paper, we have found the necessary and
sufficient conditions for the discrete time nonlinear
system to be transformed into observable canonical form
by state coordinates change. The scheme we use can be
considered as the discrete version of the well-known
continuous time results. However, unlike the continuous
time case, our theorems give the desired state
coordinates change without solving partial differential
equations. This phenomenon can be also found in
linearization problem.[10] Finally, our approach has been
shown to be applicable to both the systems without
input and those with input, by slight change of the
definition of the vector field.
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