• 제목/요약/키워드: Nonlinear mixed boundary conditions

검색결과 26건 처리시간 0.02초

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping;Chen, Yan-Hong;Hong, Zong-Li;Lin, Chia-Hao
    • Advances in nano research
    • /
    • 제6권2호
    • /
    • pp.163-182
    • /
    • 2018
  • Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.

Approximating Coupled Solutions of Coupled PBVPs of Non-linear First Order Ordinary Differential Equations

  • Dhage, Bapurao Chandrabhan
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.221-233
    • /
    • 2016
  • The present paper proposes a new monotone iteration method for existence as well as approximation of the coupled solutions for a coupled periodic boundary value problem of first order ordinary nonlinear differential equations. A new hybrid coupled fixed point theorem involving the Dhage iteration principle is proved in a partially ordered normed linear space and applied to the coupled periodic boundary value problems for proving the main existence and approximation results of this paper. An algorithm for the coupled solutions is developed and it is shown that the sequences of successive approximations defined in a certain way converge monotonically to the coupled solutions of the related differential equations under some suitable mixed hybrid conditions. A numerical example is also indicated to illustrate the abstract theory developed in the paper.

ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION

  • CHOI, YONGHO;JEONG, DARAE;KIM, JUNSEOK;KIM, YOUNG ROCK;LEE, SEUNGGYU;SEO, SEUNGSUK;YOO, MINHYUN
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.297-311
    • /
    • 2015
  • We present a robust and accurate boundary condition for pricing financial options that is a hybrid combination of the payoff-consistent extrapolation and the Dirichlet boundary conditions. The payoff-consistent extrapolation is an extrapolation which is based on the payoff profile. We apply the new hybrid boundary condition to the multi-dimensional Black-Scholes equations with a high correlation. Correlation terms in mixed derivatives make it more difficult to get stable numerical solutions. However, the proposed new boundary treatments guarantee the stability of the numerical solution with high correlation. To verify the excellence of the new boundary condition, we have several numerical tests such as higher dimensional problem and exotic option with nonlinear payoff. The numerical results demonstrate the robustness and accuracy of the proposed numerical scheme.

층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향 (Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination)

  • 김효진;홍창선
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

A time-domain simulation of an oscillating water column with irregular waves

  • Koo, Weoncheol;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.147-158
    • /
    • 2012
  • A time-domain simulation of a land-based Oscillating Water Column (OWC) with various irregular waves as a form of PM spectrum is performed by using a two-dimensional fully nonlinear numerical wave tank (NWT) based on the potential theory, mixed Eulerian-Lagrangian (MEL) approach, and boundary element method. The nonlinear free-surface condition inside the OWC chamber was specially devised to describe both the pneumatic effect of the time-varying pressure and the viscous energy loss due to water column motions. The quadratic models for pneumatic pressure and viscous loss are applied to the air and free surface inside the chamber, and their numerical results are compared with those with equivalent linear ones. Various wave spectra are applied to the OWC system to predict the efficiency of wave-energy take-off for various wave conditions. The cases of regular and irregular waves are also compared.