• Title/Summary/Keyword: Nonlinear least square

Search Result 242, Processing Time 0.036 seconds

Fuzzy least squares polynomial regression analysis using shape preserving operations

  • Hong, Dug-Hun;Hwang, Chang-Ha;Do, Hae-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.571-575
    • /
    • 2003
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using mixed nonlinear program.

Simulation-Based Determination of Hydrodynamic Derivatives and 6DOF Motion Analysis for Underwater Vehicle (시뮬레이션 기반 수중 운동체의 유체력 미계수 결정 및 6자유도 운동해석)

  • Go, Gwangsoo;Ahn, Hyung Taek;Ahn, Jin-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • This paper introduces a simulation-based determination method for hydrodynamic derivatives and 6DOF (degrees-offreedom) motion analysis for an underwater vehicle. Hydrodynamic derivatives were derived from second-order modulus expansion and composed of the added mass, and linear and nonlinear damping coefficients. The added mass coefficients were analytically obtained using the potential theory. All of the linear and nonlinear damping coefficients were determined using CFD simulation, which were performed for various cases based on the actual operating condition. Then, the linear and nonlinear damping coefficients were determined by fitting the CFD results, which referred to 6DOF forces and moments acting on an underwater vehicle, with the least square method. To demonstrate the applicability of the current study, 6DOF simulations for three different scenarios (L-, U-, and S-turn) were carried out, and the results were validated on the basis of physical plausibility.

FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH SQUARE GROWTH NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • We give a theorem for the existence of at least three solutions for the fourth order elliptic boundary value problem with the square growth variable coefficient nonlinear term. We use the variational reduction method and the critical point theory for the associated functional on the finite dimensional subspace to prove our main result. We investigate the shape of the graph of the associated functional on the finite dimensional subspace, (P.S.) condition and the behavior of the associated functional in the neighborhood of the origin on the finite dimensional reduction subspace.

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.

Application of dynamic matrix control (Dynamic Matrix Control의 응용)

  • Moon, Il;Eyo, Young-Koo;Song, Hyung-Keun;Park, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.652-657
    • /
    • 1987
  • The Dynamic Matrix Control(DMC) technique was applied to nonlinear and nonminimum phase system. System model was identified by using Least Square method. Desired output trajectory was prespecified and input suppression parameter was also introduced. It was shown that DMC technique worked with great success in solving both nonminimum phase system and nonlinear system.

  • PDF

SEMILOCAL CONVERGENCE THEOREMS FOR A CERTAIN CLASS OF ITERATIVE PROCEDURES

  • Ioannis K. Argyros
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.29-40
    • /
    • 2000
  • We provide semilocal convergence theorems for Newton-like methods in Banach space using outer and generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Frechet-derivative. This way our Newton-Kantorovich hypotheses differ from earlier ones. Our results can be used to solve undetermined systems, nonlinear least square problems and ill-posed nonlinear operator equations.

Compensation for Nonlinear RE Power Amplifier using a Variable Step-Size LMS algorithm

  • Kim, Hyoun kuk;Park, Ke young;Lee, Yong min
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.153-156
    • /
    • 2002
  • An adaptive predistorr is proposed to compensate for the nonlinear distortion of a high power amplifier (HPA) in 16 QAM system. It fumed out that the proposed predistorter using a variable step-size least mean square (VSSLMS) algorithm is stable and can reduce the Total Distortion (TD) to 0. 1dB at the HPA output backoff=0.0 dB.

  • PDF

Feature selection using genetic algorithm for constructing time-series modelling

  • Oh, Sang-Keon;Hong, Sun-Gi;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.102.4-102
    • /
    • 2001
  • An evolutionary structure optimization method for the Gaussian radial basis function (RBF) network is presented, for modelling and predicting nonlinear time series. Generalization performance is significantly improved with a much smaller network, compared with that of the usual clustering and least square learning method.

  • PDF

A Study on Adaptive Interference Canceller of Wireless Repeater for Wideband Code Division Multiple Access System (WCDMA시스템 무선 중계기의 적응간섭제거기에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1321-1327
    • /
    • 2009
  • In this paper, as the mobile communication service is widely used and the demand for wireless repeaters is rapidly increasing because of the easiness of extending service areas. But a wireless repeater has a problem the oscillation due to feedback signal. We proposed a new hybrid interference canceller using the adaptive filter with CMA(Constant Modulus Algorithm)-Grouped LMS(Least Mean Square) algorithm in the adaptive interference canceller. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped LMS algorithm. The proposed detector uses the LMS algorithms with two different step size to reduce mean square error and to obtain fast convergence. This structure reduces the number of iterations for the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller.

Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions (롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법)

  • Jeon, Tae-Hyeong;Lee, Jung-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.