• 제목/요약/키워드: Nonlinear free surface boundary conditions

검색결과 52건 처리시간 0.03초

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現) (Simulation of Standing Wave using Boundary Element Method)

  • 오영민;이길성;전인식
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1445-1451
    • /
    • 1994
  • 해안구조물에 작용하는 설계파압(設計波壓)을 수치적으로 계산하기 위해서는 먼저 쇄파한계(碎波限界)에 가까운 큰 중복파랑을 수치적으로 재현할 필요가 있다. 이를 위해서는 지배방정식(支配方程式)과 비선형항(非線形項)을 포함하는 경계조건을 효과적으로 반영해야 하며 특히, 자유표면(自由表面) 경계조건(境界條件)에서의 속도의 제곱항의 처리가 중요하다. 본 연구에서는 Newton 방법을 이용하여 제곱항을 충실히 반영하므로써 일반적인 셜계파 성향에 거의 상응하는 중복파랑을 재현하였으며 기존의 섭동법(攝動法) 또는 Fourier 전개 기법 및 수리실험 결과와 비교하여 그 정확도를 검토하였다.

  • PDF

선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석 (Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern)

  • 최희종;전호환;윤현식;이인원;박동우;김동진
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.

세장선 이론에 의한 조파저항의 수치 해석 (Numerical Analysis on the Wave Resistance by the Theory of Slender Ships)

  • 김인철
    • 수산해양기술연구
    • /
    • 제23권3호
    • /
    • pp.1-1
    • /
    • 1987
  • 이상으로부터 다음의 결론을 얻는다. 조파저항 이론의 전개에서 Michell 적분보다 더욱 정밀한 Neumann-Kelvin 문제가 복잡한 kernel 함수 때문에 많은 시간과 노력이 필요하지만, 원점 부근에서 Kelvin 소오스의 점근거동을 조사하여 세장체 근사를 행함으로 N-K 문제의 kernel 함수에 대한 근사와 동등하게 처리될 수 있었다. 조파저항의 계산 결과가 Michell 적분과 비슷한 경향을 보이나, 실험치와의 정확한 비교를 할 수 없었다. 그러나 세장선 이론을 적용함으로써 훨씬 복잡하고 지루한 작업을 들 수 있었다. 전진 속도를 갖는 경우에는 수정된 Green정리를 이용하면 될 것으로 기대된다.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

규칙파와 수평판의 비선형 상호작용에 의한 고차 조화항 발생 (Higher Harmonic Generation by Nonlinear Interaction between Monochromatic Waves and a Horizontal Plate)

  • 고혁준;조일형
    • 한국해안해양공학회지
    • /
    • 제19권5호
    • /
    • pp.484-491
    • /
    • 2007
  • 규칙파와 수면아래 잠긴 수평판 사이의 비선형 상호작용을 규명하기 위하여 수치파동수조를 이용하여 수치 실험을 수행하였다. 수치모델로 비선형 포텐셜 이론을 근거로 한 고차 경계요소법과 Navier Stokes 방정식과 엄밀한 자유표면 경계조건식을 푸는 CADMAS-SURF을 사용하였다. 두 모델 모두 수평판 위의 천수역에서 발생하는 고차 조화항들을 예측할 수 있으며 점성효과를 포함하는 CADMAS-SURF는 수평판 양단에서 발생하는 와류와 박리에 의한 고차 조화항의 발생을 재현할 수 있다. 수평판의 잠긴 깊이와 길이 변화에 따른 반사율과 투과율을 Patarapanich and Cheong(1989)의 모형실험결과와 비교하였고 서로 잘 일치함을 확인하였다. 수평판의 길이가 길어지고 잠긴 깊이가 얕아질수록 입사파의 에너지가 고차 조화항으로 더 많이 전이됨을 확인하였다.

종모양 분포 변환함수를 이용한 선형최적화 기법에 관한 연구 (Hull Form Optimization by Modification Function of Bell-shaped Distribution)

  • 최희종;김희정;전호환;정광효
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.550-559
    • /
    • 2006
  • A design procedure for a ship with minimum total resistance was developed using a numerical optimization method called SQP(Sequential Quadratic Programming) and a CFD technique based on the Rankine source panel method with the nonlinear free surface boundary conditions. During the whole optimization process the geometry of the hull shape was represented based on the NURBS(Non-uniform rational B-spline) technique and the modification of the hull shape was controlled using the Bell-shaped distribution function to keep the fairness of the hull shape before and after the hull modification. The numerical analysis was carried out using 4000TEU container ship in the towing tank facility installed in the Pusan national university to know the validity of the developed algorithm for this study. As the results of the numerical analysis it proved that the resistance of the optimized hull is conspicuously reduced in comparison with the original hull in a wave-making resistance point of view.

Semi-Analytical Methods for Different Problems of Diffraction-Radiation by Vertical Circular Cylinders

  • Malenica, Sime
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.116-138
    • /
    • 2012
  • As in the other fields of mechanics, analytical methods represent an important analysis tool in marine hydrodynamics. The analytical approach is interesting for different reasons : it gives reference results for numerical codes verification, it gives physical insight into some complicated problems, it can be used as a simplified predesign tool, etc. This approach is of course limited to some simplified geometries (cylinders, spheres, ...), and only the case of one or more cylinders, truncated or not, will be considered here. Presented methods are basically eigenfunction expansions whose complexity depends on the boundary conditions. The hydrodynamic boundary value problem (BVP) is formulated within the usual assumptions of potential flow and is additionally simplified by the perturbation method. By using this approach, the highly nonlinear problem decomposes into its linear part and the higher order (second, third, ...) corrections. Also, periodicity is assumed so that the time dependence can be factorized i.e. the frequency domain formulation is adopted. As far as free surface flows are concerned, only cases without or with small forward speed are sufficiently simple to be solved semi-analytically. The problem of the floating body advancing in waves with arbitrary forward speed is far more complicated. These remarks are also valid for the general numerical methods where the case of arbitrary forward speed, even linearized, is still too difficult from numerical point of view, and "it is fair to say that there exists at present no general practical numerical method for the wave resistance problem" [9], and even less for the general seakeeping problem. We note also that, in the case of bluff bodies like cylinders, the assumptions of the potential flow are justified only if the forward speed is less than the product of wave amplitude with wave frequency.