• Title/Summary/Keyword: Nonlinear force method

Search Result 634, Processing Time 0.028 seconds

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Deformability of Flat Plate Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트의 변형능력)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.482-493
    • /
    • 2003
  • Flat plate structures subjected to lateral load have less deformability than conventional moment frames, due to the brittle failure of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed to investigate the deformability of flat plates. The numerical results show that as number of continuous spans increases, the deformability of flat plates considerably decreases. Therefore, existing experiments using sub-assemblages with 1 or 2 spans may overestimate the deformability of flat plates, and current design provisions based on the experiments may not be accurate in estimating the deformability. A design method estimating the deformability was developed on the basis of numerical results, and verified by comparison with existing experiment. In the proposed method, the effects of primary design parameters such as direct shear force, punching shear capacity, aspect ratio of connection, number of spans, and initial stiffness of plate can be considered.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Analysis on Bond Characteristics of Reinforcements for UHPC Hybrid Cable-Stayed Bridge Deck Joints (초고성능 콘크리트 하이브리드 사장교 바닥판 접합부 철근의 부착 성능에 대한 해석)

  • Seonwoo, Yoon Ho;Park, Sung Kyun;Kwahk, Im Jong;Yoon, Young Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.207-214
    • /
    • 2011
  • Ultra High Performance Concrete (UHPC), which is characterized by its high strength and advanced ductile behavior that is much superior to those of convention concrete, is a useful material to make thinner and longer bridges. The precast segmental construction method utilizing UHPC has been mainly studied because cast-in-place UHPC is very difficult and complicate to be achieved. As a part of those research, the structural performance evaluation of different types of joint connection method for hybrid cable-stayed bridge utilizing UHPC by using nonlinear analyses is performed in this study. The bond stress at joint is obtained by section force analyses for a 600 m cable-stayed bridge deck, and compared with the required bond stress at joint. Analysis results show that the U Type connection and straight type connection resist the highest ultimate load and bond strength, respectively. In addition, all considered joint connection systems satisfy the bond performances at joint required in the final stage of cable-stayed bridge utilizing UHPC.

Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace (Knee - Brace를 활용한 비정형 필로티 건물의 내진보강방안에 대한 해석적 연구)

  • Yoo, Suk-Hyung;Kim, Dal-Gee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Torsional behavior due to the plane irregularities of the piloti building can cause excessive story drift in the torsionally outermost column, which can lead to shear failure of the column. As a seismic retrofit method that can control the torsional behavior of the piloti building, the expansion of RC wall, steel frame or steel brace may be used, but such methods may hinder the openness of the piloti floor. Therefore, in this study, linear dynamic analysis and nonlinear static analysis for piloti buildings retrofitted by knee brace were performed, and seismic performance evaluation and torsion control effect of knee brace were analyzed. The results showed that the shear force of the column increased when the piloti building retrofitted by knee brace, but it was effective in controlling the torsional deformation. In case of retrofit between knee brace and column by 30°, the shear force of the column increased less than that of 60°, and the lateral displacement of column was decreased in the order of □, ◯ and H in cross-section.

A Study on the Optimal Design of Reinforced Concrete Frames Using SUMT (SUMT 법(法)을 이용(利用)한 철근(鐵筋)콘크리트 뼈대구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Young Chae;Lee, Qyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.27-48
    • /
    • 1984
  • This study is conserned with the optimization of reinforced concrete frames using limit state design theory. Formulations of the optimal design for reinforced concrete frame based on the limit state theory turn out to be the nonlinear programming problems which have to deal with the required steel area, the width and effective height of the beam and column section and the moment reduction factor as the design variables. The objective function is formulated as the total construction cost which considers the costs of steel, concrete and forming for the reinforced concrete frames, and the basic constraints are imposed upon both ultimate and serviciability limit state concepts. Also, the stress blocks assumpted in CP110 and Hognestad et al. theory are applied to analysis an ultimate resistant section force for the ultimate limit state and only the criteria of CP110 are used for serviciability limit state. The optimized technique which is applied to solve the nonlinear programming problems for the optimization of reinforced concrete frames is SUMT utilizing the modified Newton-Raphson method. This algorithm is used to test for the two reinforced concrete frames, and then is compared and analysized with the numerical results of reference(10) to examine its convergence, applicability and stability under the same conditions. The results of this study are discussed about the economy comparision of the optimal values for CP110 and Hognestad et al., and the applicability, stability, convergence and validity of this algorithm used herein through the numerical analyses.

  • PDF

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

Control Method to Single Degree or Three Degrees of Freedom for Hybrid Testing (하이브리드 실험을 위한 1 또는 3자유도에 대한 제어 기법)

  • Lee, Jae-Jin;Kang, Dae-Hung;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2409-2421
    • /
    • 2011
  • This paper will present hybrid tests to a one bay-one story steel frame structure under ground excitation. A structure used in this paper for hybrid test, to evaluate performance and behavior, is divided into two models; one is numerical model with one column element, and a truss or a beam element, the other is physical substructural model with one beam-column element. All tests considered one or three degrees of freedom to implement real-time hybrid test, and two control algorithms to control hardware are used; one using MATLAB/Simulink, the other using OpenSees, OpenFresco and xPCTarget. In addition, for real-time data communication between numerical and physical substructural models SCRAMNet was used. The results of hybrid tests were compared with one of numerical analysis of numerical model with fiber force-based beam-column elements using OpenSees. Real-time hybrid tests were implemented for the validation of control system with simple structure, and then it will be extended to hybrid test for higher nonlinear or complex structure later on.

  • PDF

Dynamic Manipulability for Cooperating Multiple Robot Systems with Frictional Contacts (접촉 마찰을 고려한 다중 로봇 시스템의 조작도 해석)

  • Byun Jae-Min;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.10-18
    • /
    • 2006
  • We propose a new approach to compute possible acceleration boundary, so is called dynamic manipulability, for multiple robotic systems with frictional contacts between robot end-effectors and object. As the frictional contact condition which requires each contact force to lie within a friction cone is based on the nonlinear inequality formalism is not easy to handle the constraint in manipulability analysis. To include the frictional contact condition into the conventional manipulability analysis we approximate the friction cone to a pyramid which is described by linear inequality constraints. And then achievable acceleration boundaries of manipulated object are calculated conventional linear programming technique under constraints for torque capability of each robot and the approximated contact condition. With the proposed method we find some solution to which conventional approaches did not reach. Also, case studies are Presented to illustrate the correctness of the proposed approach for two robot systems of simple planar robots and PUMA560 robots.