• 제목/요약/키워드: Nonlinear feedback gain

검색결과 108건 처리시간 0.027초

비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계 (Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal)

  • 장유진;김상우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

시간지연을 갖는 비선형 시스템의 출력 피드백 제어 (Output Feedback Control for Nonlinear System with Time Delay)

  • 이성렬
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.239-243
    • /
    • 2013
  • 본 논문에서는 입력에 시간 지연이 존재하는 삼각구조의 비선형시스템에 대한 출력 피드백 제어방법을 제안한다. 제안한 제어기는 고이득 관측기와 선형제어기로 구성한다. Lyapunov-Krasovskii 정리를 이용하여 점근적 안정도를 보장하는 입력지연의 크기를 유도한다. 마지막으로 제안한 결과의 유효성을 증명하기 위하여 모의실험 예제를 제공한다.

비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계 (Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder)

  • 장유진;김상우
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권2호
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

고이득 관측기를 이용한 적분 슬라이딩 모드 제어 (Integral sliding Mode Control with High-gain Observer)

  • 오승록;신준형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.233-236
    • /
    • 2002
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainties. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the it presence of input coefficient uncertainty.

  • PDF

무선 센서 네트워크를 위한 비선형 네트워크 제어 시스템의 출력 궤환 분산 퍼지 제어기 설계 (Decentralized Fuzzy Output Feedback Control of Nonlinear Networked Control Systems for Wireless Sensor Network)

  • 주영훈;나인호;구근범;박진배
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.323-328
    • /
    • 2009
  • 본 논문에서는 무선 센서 네트워크를 위한 비선형 네트워크 제어 시스템의 출력 궤환 분산 퍼지 제어기를 설계한다. 특히나, 분산 제어를 위한 네트워크 제어 시스템은 출력의 패킷 손실과 입력 전송 실패를 가진다고 가정한다. 제어기 설계를 위해 먼저 비선형 하위 시스템의 Takagi-Sugeno (T-S) 퍼지 모델을 제시하고, 각 하위 시스템에 대한 출력 궤환 분산 퍼지 제어기를 설계한다. 제안된 제어기를 포함한 폐루프 시스템의 안정도 조건을 Lyapunov 방정식을 통하여 구하고, 구해진 안정도 조건을 선형 행렬 부등식으로 나타내어, 이를 통해 제어기의 이득값을 구한다. 모의실험을 통하여 제어기의 효용성을 평가한다.

DDV를 이용한 압력 제어시스템의 강인제어 (Robust Control of Pressure Control System Using Direct Drive Valve)

  • 이창돈;박성환;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

ε조절 요소를 가진 부분 상태 궤환 제어기를 이용한 자기부상 시스템의 제어 (Control of Electromagnetic Levitation System using ε-scaling Partial State Feedback Controller)

  • 박규만;최호림
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1572-1576
    • /
    • 2011
  • The electromagnetic levitation(EMS) system is one of the well-known nonlinear system because of its nonlinearity and several control techniques have been proposed. We propose an ${\epsilon}$-scaling partial feedback controller for the ball position control of the EMS system. The key feature of our proposed controller is the use of the scaling factor ${\epsilon}$ which provides a function of controller gain tuning along with robustness. In this paper, we show the stability analysis of our proposed controller and the convergence analysis of the state observer in terms of ${\epsilon}$-scaling factor. In addition, the experimental results show the validity of the proposed controller and improved control performance over the conventional PID controller.