• Title/Summary/Keyword: Nonlinear feature

Search Result 295, Processing Time 0.027 seconds

Synthesis of Realistic Facial Expression using a Nonlinear Model for Skin Color Change (비선형 피부색 변화 모델을 이용한 실감적인 표정 합성)

  • Lee Jeong-Ho;Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-75
    • /
    • 2006
  • Facial expressions exhibit not only facial feature motions, but also subtle changes in illumination and appearance. Since it is difficult to generate realistic facial expressions by using only geometric deformations, detailed features such as textures should also be deformed to achieve more realistic expression. The existing methods such as the expression ratio image have drawbacks, in that detailed changes of complexion by lighting can not be generated properly. In this paper, we propose a nonlinear model for skin color change and a model-based synthesis method for facial expression that can apply realistic expression details under different lighting conditions. The proposed method is composed of the following three steps; automatic extraction of facial features using active appearance model and geometric deformation of expression using warping, generation of facial expression using a model for nonlinear skin color change, and synthesis of original face with generated expression using a blending ratio that is computed by the Euclidean distance transform. Experimental results show that the proposed method generate realistic facial expressions under various lighting conditions.

Small Target Detection Method Using Bilateral Filter Based on Surrounding Statistical Feature (주위 통계 특성에 기초한 양방향 필터를 이용한 소형 표적 검출 기법)

  • Bae, Tae-Wuk;Kim, Young-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

A Experimental Study on the Development of a Book Recommendation System Using Automatic Classification, Based on the Personality Type (자동분류기반 성격 유형별 도서추천시스템 개발을 위한 실험적 연구)

  • Cho, Hyun-Yang
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.215-236
    • /
    • 2017
  • The purpose of this study is to develop an automatic classification system for recommending appropriate books of 9 enneagram personality types, using book information data reviewed by librarians. Data used for this study are book review of 501 recommended titles for children and young adults from National Library for Children and Young Adults. This study is implemented on the assumption that most people prefer different types of books, depending on their preference or personality type. Performance test for two different types of machine learning models, nonlinear kernel and linear kernel, composed of 360 clustering models with 6 different types of index term weighting and feature selections, and 10 feature selection critical mass were experimented. It is appeared that LIBLINEAR has better performance than that of LibSVM(RBF kernel). Although the performance of the developed system in this study is relatively below expectations, and the high level of difficulty in personality type base classification take into consideration, it is meaningful as a result of early stage of the experiment.

Impact of Copper Densities of Substrate Layers on the Warpage of IC Packages

  • Gu, SeonMo;Ahn, Billy;Chae, MyoungSu;Chow, Seng Guan;Kim, Gwang;Ouyang, Eric
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In this paper, the impact of the copper densities of substrate layers on IC package warpage is studied experimentally and numerically. The substrate strips used in this study contained two metal layers, with the metal densities and patterns of these two layers varied to determine their impacts. Eight legs of substrate strips were prepared. Leg 1 to leg 5 were prepared with a HD (high density) type of strip and leg 6 to leg 8 were prepared with UHD (ultra high density) type of strip. The top copper metal layer was designed to feature meshed patterns and the bottom copper layer was designed to feature circular patterns. In order to consider the process factors, the warpage of the substrate bottom was measured step by step with the following manufacturing process: (a) bare substrate, (b) die attach, (c) applying mold compound (d) and post reflow. Furthermore, after the post reflow step, the substrate strips were diced to obtain unit packages and the warpage of the unit packages was measured to check the warpage trends and differences. The experimental results showed that the warpage trend is related to the copper densities. In addition to the experiments, a Finite Element Modeling (FEM) was used to simulate the warpage. The nonlinear material properties of mold compound, die attach, solder mask, and substrate core were included in the simulation. Through experiment and simulation, some observations were concluded.

A Study on Automatic Phoneme Segmentation of Continuous Speech Using Acoustic and Phonetic Information (음향 및 음소 정보를 이용한 연속제의 자동 음소 분할에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.4-10
    • /
    • 2000
  • The work presented in this paper is about a postprocessor, which improves the performance of automatic speech segmentation system by correcting the phoneme boundary errors. We propose a postprocessor that reduces the range of errors in the auto labeled results that are ready to be used directly as synthesis unit. Starting from a baseline automatic segmentation system, our proposed postprocessor trains the features of hand labeled results using multi-layer perceptron(MLP) algorithm. Then, the auto labeled result combined with MLP postprocessor determines the new phoneme boundary. The details are as following. First, we select the feature sets of speech, based on the acoustic phonetic knowledge. And then we have adopted the MLP as pattern classifier because of its excellent nonlinear discrimination capability. Moreover, it is easy for MLP to reflect fully the various types of acoustic features appearing at the phoneme boundaries within a short time. At the last procedure, an appropriate feature set analyzed about each phonetic event is applied to our proposed postprocessor to compensate the phoneme boundary error. For phonetically rich sentences data, we have achieved 19.9 % improvement for the frame accuracy, comparing with the performance of plain automatic labeling system. Also, we could reduce the absolute error rate about 28.6%.

  • PDF

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data (고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법)

  • Cho, Jae-Hoon;Park, Jin-Il;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

Sonar Target Classification using Generalized Discriminant Analysis (일반화된 판별분석 기법을 이용한 능동소나 표적 식별)

  • Kim, Dong-wook;Kim, Tae-hwan;Seok, Jong-won;Bae, Keun-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.125-130
    • /
    • 2018
  • Linear discriminant analysis is a statistical analysis method that is generally used for dimensionality reduction of the feature vectors or for class classification. However, in the case of a data set that cannot be linearly separated, it is possible to make a linear separation by mapping a feature vector into a higher dimensional space using a nonlinear function. This method is called generalized discriminant analysis or kernel discriminant analysis. In this paper, we carried out target classification experiments with active sonar target signals available on the Internet using both liner discriminant and generalized discriminant analysis methods. Experimental results are analyzed and compared with discussions. For 104 test data, LDA method has shown correct recognition rate of 73.08%, however, GDA method achieved 95.19% that is also better than the conventional MLP or kernel-based SVM.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.