• Title/Summary/Keyword: Nonlinear behaviors

Search Result 572, Processing Time 0.03 seconds

An analysis about the behavior of rubber component with large deformation (대변형을 하는 고무 부품의 거동에 관한 해석)

  • Han Moon-Sik;Cho Jae-Ung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2005
  • The non-linear finite element program of the large deformation analysis by computer simulation has been used in the prediction and evaluation of the behaviors of the non-linear rubber components. The analysis of rubber components requires the tools modelling the special materials that are quite different from those used for the metallic parts. The nonlinear simulation analysis used in this study is expected to be widely applied in the design analysis and the development of several rubber components which are used In the manufacturing process of many industries. By utilizing this method, the time and cost can also be saved in developing the new rubber product. The objective of this study is to analyze the rubber component with the large deformation and non-linear properties.

Statistical Analysis of Major Joint Motions During Level Walking for Men and Women (보행에서 남성과 여성에 대한 주요 관절 운동의 통계학적 분석)

  • Kim, Min-Kyoung;Park, Jung-Hong;Son, Kwon;Seo, Kuk-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Statistical differences between men and women are investigated for a total of eleven joint motions during level walking. Human locomotion which exhibits nonlinear dynamical behaviors is quantified by the chaos analysis. Time series of joint motions was obtained from gait experiments with ten young males and ten young females. Body motions were captured using eight video cameras, and the corresponding angular displacements of the neck and the upper body and lower extremity were computed by motion analysis software. The maximal Lyapunov exponents for eleven joints were calculated from attractors constructed and then were analyzed statistically by one-way ANOVA test to find any difference between the genders. This study shows that sexual differences in joint motions were statistically significant at the shoulder, knee and hip joints.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Application of Composite Grid Method for the Simulation of Oscillating Body

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.653-659
    • /
    • 2003
  • The main objective of this study is to estimate the hydrodynamic forces and to investigate the nonlinear behaviors of fluid motion around the oscillating body on or below a free surface. We have developed a composite grid method to solve the radiation problems. This method is applied to numerical computation of the radiation forces generated by the oscillating body. The numerical results obtained by the present method are compared with the experimental data and a linear potential theory. As a result, we can confirm the accuracy of the present method. Finally, we have evaluated the effect of viscosity on the hydrodynamic forces acting on the oscillating body.

Transformer Core Model and Parameter Estimation for ATP

  • Cho Sung-Don
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.385-389
    • /
    • 2005
  • Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Transformer modeling is not a mature field and newer improved models must be made available in ATP packages. Further, there is a lack of published guidance on recommended modeling approaches. And there is typically not enough detailed design or test information available to determine the parameters for a given model. The purpose of this paper is to develop improved transformer core models for ATP and parameter estimation methods that can efficiently utilize the limited available information such as factory test reports.

Post-Buckling Behavior of the Track due to Temperature (온도에 의한 궤도의 후좌굴 거동)

  • Lim Nam Hyoung;Lee Jee Ha;Kang Yun Suk;Yang Shin Chu
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.442-447
    • /
    • 2003
  • The actual behavior of the railroad track structure is suspected to be a complex interaction between the vertical, lateral, longitudinal, and torsional behaviors. A FE program are developed in the present study to be used for extensive nonlinear analysis of the track structures subjected to thermal load. Using the rigorous study on the deformed shape of the rail and tie, and stress resultants, characteristics of the three dimensional behavior are investigated. It is found that the flexural rigidity of the tie and the rotational stiffness of pad-fastener can be affect the behavior of the track structure and the postbuckling behavior in each rail, except lateral behavior, is not same.

  • PDF

Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation (철탑구조의 트러스형상 변화에 따른 구조거동 분석)

  • Moon, Mi Young;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The purpose of this study is to analyze the ultimate strength and behavior of triangular and rectangular frames in steel towers. Investigations of collapse mechanism including local and global failures of partial frame are carried out through finite element analysis and small scaled experiments. Ultimate strength and deformation are investigated in case of shape variations with change of the interior and exterior frames. The efficiency of rectangular frame saving sub-brace members are verified with comparisons of the ultimate strength of triangular frames.

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.

Developement of Hyperbolic Model Considering Strain Dependency (변형률 의존성을 고려한 쌍곡선 모델의 개발)

  • Lee, Yong-An;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.644-655
    • /
    • 2008
  • Conventional hyperbolic model does not satisfactorily predict the overall stress-strain behaviors of various geomaterials. Tatsuoka and Shibuya(1992) suggest the generalized hyperbolic equation(GHE) considering strain dependency and calculated performance is in good agreement with precise triaxial compression test results of stress-strain relations over wide range of strains before peak stress condition in some cases, but GHE model also does not satisfactorily predict stress-strain relations as strain goes on state of peak stress in most cases. For improve a weak point of the GHE, in this study, modified form of generalized hyperbolic equation (MGHE model) is proposed which can predict highly nonlinear stress-strain behavior for various geomaterials from small strain to peak stress condition.

  • PDF

A Study on Size Effect for Compressive Strength of Concrete considering Strength Level (강도수준에 따른 콘크리트 압축강도의 크기효과에 관한 연구)

  • 김희성;진치섭;어석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.239-244
    • /
    • 1999
  • The reduction phenomena of the compressive strength of concrete with respect to the size of specimens have been extensively investigated. However, adequate analysis technique have not been developed until now. Existing researches have shown that the larger member size, the smaller the strength. This indicated the necessity of nonlinear fracture mechanics theory in order to analyze the fracture behaviors of concrete. The are some models that predict the size effect of compressive strength of cylindrical specimens. Theses equations, however, are developed not considering the difference of fracturing mechanism which depends on both geometry of specimen and the strength level of concrete. In this paper, a model to predict compressive strength of cylindrical concrete specimens with respect to diameters, h/d ratios, and the strength level of concrete, is suggested. For this purpose, theoretical and statistical analyses are conducted. Experimental constants used in the model of new size effect are formulated in terms of strength levels of concrete based on existing experimental data.

  • PDF