• 제목/요약/키워드: Nonlinear Wave Motions

검색결과 93건 처리시간 0.028초

디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션 (NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK)

  • 박종천;김경성
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

파랑-흐름-잠제의 비선형 상호간섭 해석 (Nonlinear Interaction among Wave, Current and Submerged Breakwater)

  • 박수호;이정후
    • 대한토목학회논문집
    • /
    • 제36권6호
    • /
    • pp.1037-1048
    • /
    • 2016
  • 본 연구에서는 Navier-Stokes 방정식과 자유수면 추적에 VOF법을 채용하는 CADMAS-SURF를 이용하여 파랑과 흐름의 비선형 상호간섭현상을 연구하였다. 파-흐름 공존장에서의 유체거동 해석을 위해 CADMAS-SURF를 수정 및 확장하였고, 계산치를 실험치와 비교하여 본 연구의 타당성을 확인할 수 있었다. 본 연구의 수치수로를 파랑-흐름 공존장에서 주어지는 복잡한 물리 현상 규명과 파-흐름-잠제의 상호간섭해석에 적용하여, 유속장, 와도장, 자유수면과 와도와의 관계 등을 논의하였다.

3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산 (Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM)

  • 홍도천;홍사영;성홍근
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

Seismic and vibration mitigation for the A-type offshore template platform system

  • Lee, Hsien Hua
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.347-362
    • /
    • 1998
  • In this study an improved design method for the traditional A-type(or V-type) offshore template platform system was proposed to mitigate the vibration induced by the marine environmental loadings and the strong ground motions of earthquakes. A newly developed material model was combined into the structural system and then a nonlinear dynamic analysis in the time domain was carried out. The analysis was focused on the displacement and rotation induced by the input wave forces and ground motions, and the mitigation effect for these responses was evaluated when the viscoelastic damping devices were applied. The wave forces exerted on the offshore structures are based on Stokes fifth-order wave theory and Morison equation for small body. A step by step integration method was modified and used in the nonlinear analysis. It was found that the new design approach enhanced with viscoelastic dampers was efficient on the vibration mitigation for the structural system subjected to both the wave motion and the strong ground motion.

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

Effects of nonlinear FK (Froude- Krylov) and hydrostatic restoring forces on arctic-spar motions in waves

  • Jang, HaKun;Kim, MooHyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.297-313
    • /
    • 2020
  • An Arctic Spar is characterized by its conical shape near the waterline. In this case, the nonlinear effects from its irregular hull shape would be significant if there is either a large amplitude floater motion or steep wave conditions. Therefore, in this paper, the nonlinear effects of an Arctic Spar are numerically investigated by introducing a weakly nonlinear time-domain model that considers the time dependent hydrostatic restoring stiffness and Froude-Krylov forces. Through numerical simulations under multiple regular and irregular wave conditions, the nonlinear behavior of the Arctic Spar is clearly observed, but it is not shown in the linear analysis. In particular, it is found that the nonlinear Froude-Krylov force plays an important role when the wave frequency is close to the heave natural frequency. In addition, the nonlinear hydrostatic restoring stiffness causes the structure's unstable motion at a half of heave natural period.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF