• 제목/요약/키워드: Nonlinear Vibration Analysis

검색결과 678건 처리시간 0.028초

밸트 구동계의 비선형 진동 특성 해석 (Analysis on the Nonlinear Vibration Characteristics of a Belt Driven System)

  • 김성걸;이장무;이신영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.945-952
    • /
    • 1994
  • In this paper, a mathematical model for a belt driven system is proposed to analyse the vibtation characteristics of the driving units with belts and the free and forced vibration analyses are carried out. The mathematical model for model for the belt-driven system includes belts,pulleys, spindle and bearings. Using the Hamilton principle, the 4 nonlinear governing equations and the 12 nonlinear boundary conditions are derived. To linearize and discretize the nonlinear govering equations and boundary conditions, the perturbation method and Galerkin method are used. Also, the free vibration analyses for the various parameters of the belt driven system, which are belt tension, belt length, material property of belt, belt speed and pulley mass are made. The forced vibration analyses of the system are made and the dynamic responses for the main parmeters are analysed with the belt driven system.

  • PDF

충격파 및 구조비선형성을 고려한 미사일 조종면의 유체유발 진동특성 (Flow-Induced Vibration Characteristics of a Missile Control Surface Considering Shock Wave and Structural Nonlinearity)

  • Kim, Dong-Hyun;Lee, In;Kim, Seung-Ho
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.389.2-389
    • /
    • 2002
  • Nonlinear aeroelastic characteristics of a missile control surface are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are also considered in high-speed flow region. To effectively consider a freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on finite element method (FEM). (omitted)

  • PDF

탄소나노튜브 디바이스의 전기역학적 비선형 거동 해석 (Nonlinear Analysis of Electromechanical Behavior in Carbon Nanotube Devices)

  • 김일광;이수일;강상욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.467-471
    • /
    • 2009
  • In this study a cantilevered carbon nanotube(CNT) switch was investigated with the linear and the nonlinear structural models incorporating the electrostatic force and van der Waals interactions between the CNT and ground surface. Due to the applied voltage and van der Waals interactions the CNT deforms statically and dynamically and finally pull into the surface. When the nonlinear model is considered in case of the relatively large gap between the CNT and the surface, the static pull-in voltage was increased due to the nonlinear hardening effect. Also the dynamic response was investigated with the different external dc and ac voltages. The CNT shows various dynamic behaviors and instabilities including dynamic pull-in. Based on this study, further research on the dynamic and nonlinear stability of CNT nanodevices should be requested to develop the new type of nano switches or nano-memory.

  • PDF

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions

  • Arani, Ali Ghorbanpour;Kiani, Farhad
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.149-165
    • /
    • 2018
  • Using the modified couple stress theory and Euler-Bernoulli beam theory, this paper studies nonlinear vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation. Using the Hamilton's principle, the set of the governing equations are derived and solved numerically using differential quadrature method (DQM), Newark beta method and arc-length technique for all kind of the boundary conditions. First convergence and accuracy of the presented solution are demonstrated and then effects of radius of gyration, Poisson's ratio, small scale parameters, temperature changes and coefficients of the foundation on the linear and nonlinear natural frequencies and dynamic response of the microbeam are investigated.

에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어 (Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices)

  • 박지훈;김길환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

끝단 장착물이 있는 항공기 날개의 천음속/초음속 플러터 해석 (Transonic/Supersonic Flutter Analysis of a Fighter Wing with Tip-Store)

  • 김동현;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1198-1203
    • /
    • 2000
  • In this study, a nonlinear aeroelastic analysis system for the fighter wing with tip-store has been developed additionally in the transonic and supersonic flow region. The unsteady CFD code based on the transonic small disturbance theory has been incorporated to consider the numerical capability for the aerodynamic nonlinear effects. The coupled time-integration method is used to observe the detailed nonlinear aeroelastic responses for elastic wings in their flight. condition. A conservative wing-box model of a fighter wing with tip-store is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The results of flutter analyses are presented in the subsonic, transonic and supersonic flow regime.

  • PDF

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

충격성분을 갖는 보의 진동에 대한 비선형 해석 (Nonlinear Analysis of Beam Vibration with Impact)

  • 이봉현;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.455-460
    • /
    • 2000
  • Impact occurs when the vibration amplitude of a mechanical component exceeds a given clearance size. Examples of these mechanical systems include impact dampers, gears, link mechanism, rotor rub, and so on. The vibration due to impact has strong non-linear characteristics, which cannot be predicted by usual linear analysis. The designs of mechanical systems with impacts should be done on the basis of overall dynamic characteristics of the systems. In this paper, the nonlinear behaviors of a beam with a periodically moving support and a rigid stop are investigated numerically and experimentally. The beam vibration with impact is modeled by the equations of motion containing piecewise linear restoring forces and by the coefficient of restitution, respectively. Experimental and numerical results show jump phenomena and higher-harmonic vibrations. The effects between the increase of stiffness during impact and the coefficient of restitution are investigated through the comparison of the experimental and numerical results.

  • PDF