• 제목/요약/키워드: Nonlinear System Identification

Search Result 391, Processing Time 0.031 seconds

Identification of Nonlinear Dynamic Systems via the Neuro-Fuzzy Computing and Genetic Algorithms

  • Lee, Seon-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1892-1896
    • /
    • 2005
  • In this paper, an effective method for selecting significant input variables in building ANFIS (Adaptive Neuro-Fuzzy Inference System) for nonlinear system modeling is proposed. Dominant inputs in a nonlinear system identification process are extracted by evaluating the performance index and they are applied to ANFIS. The availability of our proposed model is verified with the Box and Jenkins gas furnace data. The comparisons with other methods are also given in this paper to show our proposed method is superior to other models.

  • PDF

Identification of Optimum Sites for Power System Controller using Normal Forms of Vector Field (벡터계 정규 형식을 이용한 전력시스템 제어기 설치 위치 선정)

  • 장길수;이인수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.227-233
    • /
    • 2004
  • In stressed power system due to the presence of increased nonlinearity and the existence of nonlinear modal interactions. there exist some limitations to the use of conventional linear system theory to identify the optimum sites for a controller. This paper suggests an approach based on the method of normal forms to identify the optimum sites for controllers with incorporating the nonlinear interaction . In this paper, nonlinear participation factors and coupling factors are proposed as measures of the nonlinear interactions, and identification procedure of optimum sites for a controller is also proposed. The proposed procedure is applied to the 10-generator New England System and the KEPCO System in the year of 2010, and the results illustrate its capabilities.

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

Identification of Optimum Sites for Power System Controller using Normal Forms of Vector Field (벡터계 정규 형식을 이용한 전력시스템 제어기 설치 위치 선정)

  • 장길수;이인수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.227-227
    • /
    • 2004
  • In stressed power system due to the presence of increased nonlinearity and the existence of nonlinear modal interactions. there exist some limitations to the use of conventional linear system theory to identify the optimum sites for a controller. This paper suggests an approach based on the method of normal forms to identify the optimum sites for controllers with incorporating the nonlinear interaction . In this paper, nonlinear participation factors and coupling factors are proposed as measures of the nonlinear interactions, and identification procedure of optimum sites for a controller is also proposed. The proposed procedure is applied to the 10-generator New England System and the KEPCO System in the year of 2010, and the results illustrate its capabilities.

Utilization of the Filtered Weighted Least Squares Algorithm For the Adaptive Identification of Time-Varying Nonlinear Systems (적응 FWLS 알고리즘을 응용한 시변 비선형 시스템 식별)

  • Ahn Kyu-Young;Lee In-Hwan;Nam Sang-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.793-798
    • /
    • 2004
  • In this paper, the problem of adaptively identifying time-varying nonlinear systems is considered. For that purpose, the discrete time-varying Volterra series is employed as a system model, and the filtered weighted least squares (FWLS) algorithm, developed for adaptive identification of linear time-varying systems, is utilized for the adaptive identification of time-varying quadratic Volterra systems. To demonstrate the performance of the proposed approach, some simulation results are provided. Note that the FWLS algorithm, decomposing the conventional weighted basis function (WBF) algorithm into a cascade of two (i.e., estimation and filtering) procedures, leads to fast parameter tracking with low computational burden, and the proposed approach can be easily extended to the adaptive identification of time-varying higher-order Volterra systems.

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

Identification of Volterra Kernels of Nonlinear Van de Vusse Reactor

  • Kashiwagi, Hiroshi;Rong, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.3-26
    • /
    • 2001
  • Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its output is measured. Taking the cross correlation function between the input and the output, we obtain up to 3rd order Volterra kernels, which is ...

  • PDF

Identification of Fuzzy Dynamic Model for Fault Diagnosis of Nonlinear System (비선형계통 고장진단을 위한 온-라인 퍼지동적모델 식별)

  • 이종렬;배상욱;이기상;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.204-210
    • /
    • 1998
  • This paper discusses an on-line fuzzy dynamic model(FDM) identification of nonlinear processes for the design of fuzzy model based fault detection and isolation(FDI). The dynamic behavior of a nonlinear process is represented by a fuzzy aggregation of a set of local linear models. The identification is divided into two procedures. The first is the off-line identification of membership function. The second is the on-line identification of the local linear models. Then, we propose a residual generation scheme based on the parameters of local linear models and show that the scheme can be used for the design of FDI

  • PDF

Indirect adaptive nonlinear control for power system stabilization (전력계통안정화를 위한 간접적응 비선형제어)

  • 이도관;윤태웅;이병준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method equipped with nonlinear damping terms is combined with an identification algorithm which estimates the effect of a fault. The stability of the resulting adaptive nonlinear system is investigated.

  • PDF

Control of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어)

  • 류정우;김훈모;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.260-266
    • /
    • 1996
  • In this paper, we presents neural network identification and control of highly complicated nonlinear Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Generally the LVAD system need to compensate nonlinearities. Hence, it is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with Neural Network Identification. Once the NNI has learned the dynamic model of LVAD system, the other network, called Neural Network Controller(NNC), is designed for control of a LVAD system. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF