• Title/Summary/Keyword: Nonlinear System Identification

Search Result 391, Processing Time 0.03 seconds

M-sequence and its applications to nonlinear system identification

  • Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.7-12
    • /
    • 1994
  • This paper describes an outline of pseudorandom M-sequence and its applications to measurement and control engineering. At first, generation and properties of M-sequence is briefly described and then its applications to delay time measurement, information transmission by use of M-array, two dimensional positioning, fault detection of logical circuit, fault detection of RAM, linear and nonlinear system identification.

  • PDF

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Identification of saturation-type nonlinear feedback control systems

  • Yeping, Sun;Kasiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.161-164
    • /
    • 1996
  • The authors have recently proposed a new method for identifying Volterra kernels of nonlinear control systems by use of M-sequence and correlation technique. A specially chosen M-sequence is added to the nonlinear system to be identified, and the crosscorrelation function between the input and output is calculated. Then every crosssection of Volterra kernels up to 3rd order appears at a specified delay time point in the crosscorrelation. This method is applied to a saturation-type nonlinear feedback control system of mechanical-electrical servo system having torque saturation nonlinearity. Simulation experiments show that we can obtain Volterra kernels of saturation-type nonlinear system, and a good agreement is observed between the observed output and the calculated one from the measured Volterra kernels.

  • PDF

Nonlinear Control of High Precision Pointing Stabilization Systems with Heavy Loads (대부하 정밀 표적지향 안정화 시스템의 비선형 제어기법 연구)

  • 이대옥;강태하;김학성;박광웅
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.157-178
    • /
    • 2001
  • In this paper, the nonlinear control of high precision pointing stabilization system using feedback-linearization design methodology based on system parameter identification is discussed. Modern nonlinear servomechanism theory is adapted to cope with the hard nonlinearities inherent in the turret system. The mathematical models of electrical turret driving system to develop a high performance control algorithm are derived, and the parameter estimation algorithm identifying the unknown system parameters such as vicious and coulomb frictions, stiffness and inertia is developed. Through computer simulation and experiments, it is shown that pointing and tracking accuracy and stabilization against the wideband stochastic disturbance induced by vehicle running on the bump course are improved. Therefore, it is considered the proposed nonlinear control technique is effective in counteracting the nonlinearities and disturbances.

  • PDF

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

Nonlinear Parameter Identification of Partial Rotor Rub Based on Experiment

  • Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1969-1977
    • /
    • 2004
  • To model and understand the physics of partial rub, a nonlinear rotor model is sought by applying a nonlinear parameter identification technique to the experimental data. The results show that the nonlinear terms of damping and stiffness should be included to model partial rotor rub. Especially, the impact and friction during the contact between rotor and stator are tried to explain with a nonlinear model on the basis of experimental data. The estimated nonlinear model shows good agreements between the numerical and the experimental results in its orbit. Also, the estimated nonlinear model could explain the backward whirling orbit and jump phenomenon, which are the typical phenomena of partial rub.

Nonlinear Parameter Identification of a Partial Rubbing Rotor (부분회전마멸의 비선형 설계변수 규명)

  • 박상문;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.663-668
    • /
    • 2004
  • To model and understand the physics of partial rub, a nonlinear rotor model is investigated by applying nonlinear parameter identification technique to the experimental data. The results show that the nonlinear terms of damping and stiffness should be included to model partial rotor rub. Especially, the impact and friction during the contact between rotor and stator are tried to explain with the nonlinear model on the basis of experimental data. The estimated nonlinear model shows good agreements between numerical and experimental results in its orbit.

  • PDF

Development of Subwoofer for Car Audio System (자동차 오디오용 서브우퍼 개발)

  • Park, Seok-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper, computational analysis and experiments of subwoofer for car audio speaker system were performed and discussed to analyze acoustical phenomena for subwoofer. Ported enclosure system with subwoofer were manufactured and provided for test and simulation purposes. Subwoofer with single voice coil and double voice coil were identified by linear and nonlinear parameter identification method for loudspeaker parameters. For high power inputs to subwoofer, sound pressure levels were compared according to input powers with linear and nonlinear loudspeaker models. For subwoofer system with high power nonlinear speaker model was showed to be adequate to describe the behaviour of loudspeaker.

  • PDF

System Identification of the Hammerstein Processes for Automatic Tuning of PID Controller Using Relay Feedback

  • Koo, Doe-Gyoon;Youn, Jung-Hoon;Lee, Jie-Tae;Sung, Su-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.3-124
    • /
    • 2001
  • The nonlinearity of several chemical processes is usually approximated by a series of the nonlinear static element and the linear subsystem. In the case of the model that the nonlinear static element precedes the linear subsystem, it is called a Hammerstein model. It is a Wiener model when the order is reserved. Here we investigate a relay feedback identification method for Hammerstein type nonlinear processes. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback method. From two times activation of nonlinear processes, we identify he whole range of the nonlinear static function as well as the ultimate information of the linear subsystem.

  • PDF

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF