• Title/Summary/Keyword: Nonlinear Structural Analysis

Search Result 2,279, Processing Time 0.03 seconds

Methods of Nonlinear Structural Design Sensitivity Analysis (비선형(非線型) 구조(構造)의 설계민감도(設計敏感度) 해석법(解析法))

  • Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.13-20
    • /
    • 1987
  • Methods of nonlinear structural design sensitivity analysis are developed in parallel with the nonlinear finite element structural analysis methods and numerically evaluated. Direct decomposition and iterative solution methods for the secant stiffness approach and direct use of tangent stiffness in the design sensitivity analysis phase are derived and presented as the methods of nonlinear structural analysis and design sensitivity analysis are closely related. From the considerations of theoretical and numerical behavior, the tangent stiffness approach is shown to be efficient as the intermediate results of structural analysis can be effectively used in the design sensitivity analysis stage.

  • PDF

Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are compared with the existing solutions available from other analytical and numerical methods. In all cases, the results obtained are quite accurate.

Computerized Modules for Seismic Performance Evaluation of Existing Buildings (기존건축물 내진성능평가를 위한 전산시스템 모듈 개발)

  • Hwang, Sunwoo;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2016
  • Seismic performance evaluation of existing building usually needs much time and man power, especially in case of nonlinear analysis. Many data interaction steps for model transfer are needed and engineers should spend much time with simple works like data entry. Those time-consuming steps could be reduced by applying computerized and automated modules. In this study, computational platform for seismic performance evaluation was made with several computerized modules. StrAuto and floor load transfer module offers a path that can transfer most linear model data to nonlinear analysis model so that engineers can avoid a lot of repetitive work for input information for the nonlinear analysis model. And the new nonlinear property generator also helps to get the nonlinear data easily by importing data from structural design program. To evaluate the effect of developed modules on each stages, seismic performance evaluation of example building was carried out and the lead time was used for the quantitative evaluation.

The Structural Behavior of Cold-Formed Steel Composite Beams (냉간성형강재를 이용한 합성보의 구조적인 거동)

  • 양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.206-213
    • /
    • 1999
  • The behavior of composite beams, which are composed of cold-formed steel sheeting and normal strength concrete, have been studied. An analytical method has been developed to trace the nonlinear behavior of composite beams. The nonlinear material properties of steel sheeting, reinforcing steel bar and concrete have been included in the analysis. The nonlinear moment-curvature relation of the composite beam has been described using a cross section analysis method and a simple power model, separately. The load-deflection behavior of the beams has been simulated by step-by-step numerical integration method and is compared with test results.

  • PDF

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

Pushover Analysis for Nonlinear Seismic Response of Reinforced Concrete Mixed Building Structures (철근콘크리트 복합구조물의 비선형 지진응답산정을 위한 Pushover해석)

  • Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.631-638
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}$ and/or ductility ratio $\mu$ from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method.

  • PDF

A Study on the Method of Load Distribution for Nonlinear Behaviour in RC-T Bridge (RC-T형교의 비선형거동해석을 위한 하중분배법에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-SunChil;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • The characteristic of load-distribution is investigated by using nonlinear analysis with a field loading test of existing bridge In this study, nonlinear load-distribution technique for quantitative analysis was adopted. The results were compared with linear solution technique with data from failure test at existing RCT-girder bridge and examine the adequacy of the failure mode. The results of this study showed that the linear solution technique and the proposed nonlinear solution technique agreed well in linear region but did not matched well in nonlinear region because of load-redistribution, and that the effect of load-redistribution was considered to analysis of nonlinear region by linear solution.

  • PDF