• 제목/요약/키워드: Nonlinear Random Network Analysis

검색결과 14건 처리시간 0.026초

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (II) - 결함의 영향 - (Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs (II) - Effects of Geometric and Material Imperfections -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.792-799
    • /
    • 2007
  • A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using nonlinear random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.

벌크형 와이어직조 카고메 트러스 PCM 의 압축거동- 제 2 보: 결함의 영향 (Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs-Part II: Effects of Geometric and Material Imperfections)

  • 현상일;최지은;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.78-83
    • /
    • 2007
  • A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using nonlinear random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.

  • PDF

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측 (Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model)

  • 김유일
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

A novel method for vehicle load detection in cable-stayed bridge using graph neural network

  • Van-Thanh Pham;Hye-Sook Son;Cheol-Ho Kim;Yun Jang;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.731-744
    • /
    • 2023
  • Vehicle load information is an important role in operating and ensuring the structural health of cable-stayed bridges. In this regard, an efficient and economic method is proposed for vehicle load detection based on the observed cable tension and vehicle position using a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), a robust program for modeling and considering both geometric and material nonlinearities of bridge structures subjected to vehicle load with low computational costs. With the superiority of GNN, the proposed model is demonstrated to precisely capture complex nonlinear correlations between the input features and vehicle load in the output. Four popular machine learning methods including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machines (SVM) are refereed in a comparison. A case study of a cable-stayed bridge with the typical truck is considered to evaluate the model's performance. The results demonstrate that the GNN-based model provides high accuracy and efficiency in prediction with satisfactory correlation coefficients, efficient determination values, and very small errors; and is a novel approach for vehicle load detection with the input data of the existing monitoring system.

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

Feature Engineering and Evaluation for Android Malware Detection Scheme

  • Jaemin Jung;Jihyeon Park;Seong-je Cho;Sangchul Han;Minkyu Park;Hsin-Hung Cho
    • Journal of Internet Technology
    • /
    • 제22권2호
    • /
    • pp.423-439
    • /
    • 2021
  • Android is one of the most popular platforms for the mobile and Internet of Things (IoT) devices. This popularity has made Android-based devices a valuable target of malicious apps. Thus, it is essential to devise automatic and portable malware detection approaches for the Android platform. There are many studies on detecting mobile malware using machine learning techniques. In these studies, however, the dataset is imbalanced or is not large enough to generalize the machine learning model, or the dimensionality of features is too high to apply nonlinear classifiers. In this article, we propose a machine learning-based Android malware detection scheme that uses API calls and permissions as features. To restrict the dimensionality of features, we propose minimal domain knowledge-based and Gini importance-based feature selection. We construct large and balanced real-world datasets to build a generalized and non-skewed model and verify our model through experiments. We achieve 96.51% classification accuracy using Random Forest classifier with low overhead. In addition, we also provide an analysis on falsely classified samples in detail. The analysis results show that API hiding can degrade the performance of API call information-based malware detection systems.