벌크형 와이어직조 카고메 트러스 PCM 의 압축거동 - 제 2 보: 결함의 영향

현상일^{*}·최지은^{**}·강기주[†]

Mechanical Behaviors under Compression in Wire-woven Bulk Kagome Truss PCMs – Part II: Effects of Geometric and Material Imperfections

Sangil Hyun, Ji-Eun Choi and Ki-Ju Kang

Key Words: Kagome Truss(카고메 트러스), PCM(Periodic Cellular Metal; 규칙적 다공질금속), Nonlinear Random Network Analysis(비선형 무작위 네트웍 해석법), Geometrical Imperfections (기하학적 결함), Material Imperfections (재료결함)

Abstract

A newly developed cellular metal based on kagome lattice is an ideal candidate for multifunctional materials achieving various optimal properties. Intensive efforts have been devoted to develop efficient techniques for mass production due to its wide potential applications. Since a variety of imperfections would be inevitably included in the realistic fabrication processes, it is highly important to examine the correlation between the imperfections and material strengths. Previous performance tests were mostly done by numerical simulations such as finite element method (FEM), but only for perfect structures without any imperfection. In this paper, we developed an efficient numerical framework using *nonlinear* random network analysis (RNA) to verify how the statistical imperfections (geometrical and material property) contribute to the performance of general truss structures. The numerical results for kagome truss structures are compared with experimental measurements on 3-layerd WBK (wire-woven bulk kagome). The mechanical strength of the kagome structures is shown relatively stable with the Gaussian types of imperfections.

1. 서 론

PCM(Periodic Cellular Metal)은 규칙적인 구조를 갖는 다공질 금속으로 발포금속에 비해 높은 강도 를 가지고 있어 최근 주목 받고 있다.⁽¹⁾ 이 중 트 러스 PCM 은 높은 비강성, 비강도 그리고 잠재적 다기능성 특성 때문에 2000 년 이후 활발히 연구 가 진행되어 왔다.

트러스 PCM 을 이루는 구조 중 카고메(Kagome) 트러스 PCM^{(2)~(4)}은 다른 트러스 PCM 에 비해 소

Ť	전남대학교 기계시스템 공학부
	E-mail : kjkang@chonnam.ac.kr
	TEL: (062)530-1668 FAX: (062)530-1689
*	경북대학교 공과대학 기계공학부

** 전남대학교 자동차연구소

성 좌굴에 대한 저항성이 좋고 이방성(anisotropy) 이 낮고 내부공간의 활용가능성이 높아서 주목을 받고 있다.

최근 Kang & Lee⁽⁴⁾등은 연속된 금속 와이어를 3 차원으로 직조하여 다층으로 제작이 용이하고, 카 고메 트러스와 유사한 PCM 을 제작하는 'WBK'(Wire-woven Bulk Kagome)을 제안하였다.

WBK 는 굴곡된 와이어로 구성되었음에도 불 구하고 압축과 3 점 굽힘 시험에서 직선트러스요 소로 구성된 이상적인 카고메 트러스 구조만큼 높 은 강도와 최대강도 도달 후에도 파손 현상이 보 이지 않고 강도 하강의 속도가 매우 완만하여 많 은 에너지를 흡수하는 안정적인 구조물로 보고되 었다.⁽⁵⁾

WBK 는 6 방향의 연속적인 나선형 금속와이어 로 구성되며 연속된 와이어로 조립되기 때문에 단

층 구조보다는 수내지 수백층의 트러스 구조를 갖 는 덩어리 형태로 제작하여 활용하는 것이 유리하 다. 수 많은 셀로 구성된 덩어리 PCM 의 기계적 거동은 와이어의 굴곡과 브래이징부 존재에 의하 여 이론해석이 곤란하다. 따라서 WBK 의 탄성계 수, 압축강도 등의 등가 물성을 평가하기 위해서 는 새로운 전산해석모델의 모사가 필요하다.

압축하중을 받는 덩어리 WBK 의 기계적 거동 을 평가 하기 위해 제 1 보⁽¹³⁾에서는 결함이 없고 구조적으로 완벽하게 균일한 무한개의 셀로 구성 된 WBK 를 대상으로 하였다. 그리고 모든 셀의 거동이 완전히 동일하다고 가정하여, 단위셀에 주 기경계조건(PBC: periodic boundary condition)을 적용 하여 덩어리 WBK 의 탄성 및 소성의 기계적 거 동과 브래이징부 크기의 영향을 평가하였다. Fig. 1 은 덩어리 WBK 의 형상과 PBC 를 갖는 단위셀의 FEA 모델 을 나타내고 있다.

그러나 많은 셀로 구성된 덩어리 WBK 는 불균 일한 트러스 특성이나 접합점에서의 결함(defect) 이 존재할 수 밖에 없으며 그것이 WBK 의 기계 적 거동에 영향을 미칠 것이다. 따라서 여러 형태 의 결함을 포함하는 새로운 카고메 모델의 전산해 석이 필요하다.

Fig. 1 Configuration of (a) a bulk WBK PCM, (b) the unit cell of finite element model

본 논문에서는 제 1 보에 이어 압축하중을 받는

덩어리 WBK 의 기계적 거동을 평가하였다. 스프 링이나 트러스들로 구성된 여러 형태의 네트웍 구 조의 정적인 특성을 해석하는데 많이 사용되어온 네트웍(network) 해석법을 이용하여, 덩어리 WBK 해석모델을 효과적으로 모사하였다. 무한이 많은 셀을 가지는 덩어리 WBK 는 크게 두가지 결함의 형태를 생각할 수 있다. 먼저, 각 노드의 위치나 트러스의 길이가 완전한 카고메 격자구조에서 벗 어나는 기하학적 결함과 브레이징 부의 접합불량 과 트러스 요소의 굴곡 이나 트러스 요소 및 브레 이징등의 재료적 결함이다. 두 가지 결함의 형태 를 정의하고 실제적인 통계분포(예, 가우스 분포) 가 되도록 도입하여 실제 구조가 갖는 결함이나 불균일한 특성이 네트웍 해석에 반영되도록 하였 다. 해석결과는 제 1 보에서의 주기경계조건을 갖 는 단위셀 유한요소해석 결과와 직선 트러스 요소 로 구성된 카고메 구조에 대한 이론 예측 및 실험 측정값과 비교되었다.

2. 결함(Imperfections)의 영향

2.1 무작위 네트웍 해석법 (RNA: Random Network Analysis)

주기경계조건을 이용한 유한요소 해석 결과와 실제 실험 결과의 차이는 샘플에 포함되는 불균일 트러스 특성이나 접합점에서의 한 결함 (imperfections)에서 비롯된다고 보여진다. 따라서 여러 형태의 결함을 포함하는 카고메 모델에 대한 새로운 해석을 시도하였다. 이를 위해 유한요소해 석(FEM), 분자동력학(MD), 및 무작위 네트웍 해석 (RNA)등의 다양한 접근들이 고려되었다. 이들 중 유한요소해석은 많은 셀로 구성된 WBK 를 해석 하는 데에 시간과 경제적인 면에서 불리하다. 또 한 분자 동력학은 구조물의 동적(dynamic)인 특성 해석에는 적당하지만, 본 연구에서와 같이 외부 변위나 하중에 따른 정적인(static) 변형을 해석하 는 데는 효과적이지 않다. 반면, 스프링이나 트러 스들로 구성된 여러 형태의 네트웍 구조의 정적인 특성을 해석하는데 많이 사용되어온 네트웍 해석 법(network analysis)은 해법수순(algorithm)이 간단하 고 여러 다른 특성들 (최적 구조, 진동해석, 전기 전도도등)의 해석에도 적용되어 왔음이 알려져 있 으므로^(7, 8), 본 연구에서와 같은 결함분포를 갖는 네트웍 구조 해석에 적합하다고 판단되었다.

본 연구에서는 비정질 네트웍 구조(amorphous network structure) 및 트러스 결함을 포함하는 네트 웍의 정적 해석을 위해 공액 기울기법(conjugate

gradient method)⁽¹⁸⁾를 이용하는 무작위 네트웍 (random network) 해석법을 도입하였고, 대형 네트 웍 모델의 효과적인 전산 해석을 위해서는 MPI(Message Passing Interface)방식의 병렬 연산법 을 도입하였다.⁽¹⁰⁾ 이때 각 트러스는 일반적인 네 트윅 해석에 사용되는 스프링 모델보다 발전된 비 선형 트러스 모델을 도입하여 탄성영역(elasticity) 뿐 아니라 소성(plasticity) 영역까지 구현할 수 있 도록 하였다.

2.2 결함 모델의 정의: 기하학적 결함 및 재 료 결함

본 연구에서는 결함이 없는 균일(homogeneous) 트러스 모델인 완전격자모델(perfect lattice model)에 즉 두 가지 결함의 형태, 기하학적 결함 및 재료결함(material (geometrical imperfections) imperfections)을 도입하되 그 결함 분포가 가우스 (Gaussian) 형태를 이루도록 하였다. 기하학적 결 함은 각 접합점의 위치나 트러스의 길이가 완전한 카고메 격자 구조에서 벗어난 형태적 불완전성이 며, 재료결함은 각 접합점, 즉 브래이징 부의 접합 불량과 트러스 요소의 굴곡, 트러스 요소 및 브래 이징 등의 재료적 불균일성에서 비롯된 것으로 정 의한다.

이러한 네트웍 해석을 위해 Fig.2 와 같은 WBK 모델을 이용하였다. 직경 0.78mm SUS304 스텐레스 와이어로 구성되며, 와이어 교차점 사이의 거리는 8.1mm 인 실제 실험에 사용된 WBK 시편을 모사 한 것으로 x 축과 y 축 방향으로 각각 10 개의 단 위 셀로 구성되었으며, z 축 방향으로 3 개의 단위 셀을 가지도록 구성하였다. 전체 접합노드의 수는 1300 개이며, 각 트러스의 길이는 8.1mm 로 정하 였고, 전체 트러스의 개수는 3600 개이다. z 축 방 향으로 압축변형을 가했을 때 x-y 평면에서의 경 계효과를 없애기 위해 주기경계조건(PBC)을 적용 하였다. 먼저, 완전격자모델에 네트윅 해석법을 적

가 일정한(constant) 트러스 요소로 구성되며, 실제 시편에 존재하는 굴곡과 브래이징 부의 크기에 따 른 구속의 효과를 모사하기 위하여 제 1 보⁽¹³⁾의 주기경계조건을 갖는 WBK 단위셀의 압축 시 하 중-변위 곡선(제 1 보의 Fig.12)으로부터 한 개의 트러스 요소의 압축 하중-변위 곡선을 추정하였다. 즉, 단위셀 외부에 가해진 하중, P 와 이를 구성하 는 트러스 요소 한 개에 걸리는 하중, F 사이에 이상적인 카고메 트러스의 P= 6F 관계가 성립한 다고 가정하고, P 작용점의 변위, δ_P 와 트러스 요 소 한 개의 변위, ♂~ ↓ 아이에도 역시 이상적인 카고 메 트러스의 $\delta_p = \frac{10}{9} 6\delta_F$ 관계가 성립한다고 가정 하였다. 여기서 얻어진 결과의 타당성을 검토하기 위하여 한 개의 트러스 요소 양단에 볼조인트(ball joint)와 완전 고정(fixed boundary) 등 2 가지 경계 조건들을 적용하여 유한요소해석을 수행하여 얻은 하중-변위 곡선과 비교하였다. Fig.3 은 한 개의 트 러스 요소의 초기형상(a)과 이를 2 가지 다른 경계 조건으로 해석한 15% 압축 후의 형상(b,c)을 나타 내고 있다. Fig.4 에는 주기경계조건(PBC)을 갖는 단위셀의 해석결과로부터 추정된 단일 트러스의 압축 하중-변위 곡선과 Fig.3 의 단일 트러스에 직 접 하중을 가하여 구한 압축거동을 비교하였는데, 주기경계조건을 갖는 단위셀의 해석결과로부터 추 정한 하중-변위 곡선이 극단적인 Fig. 3(a)와 3(b)의 두 가지 경계조건들을 갖는 단일 트러스 요소의 이키키키서 ロコオヘコ 1 1 1 곡선 미당한

Fig. 4 Force vs. displacement curves for various boundary conditions. The (red) solid curve for the periodic boundary condition is fitted by 6th order polynomial functions.

Fig. 5 Stress vs. strain curves for the bulk WBK models. Perfect truss shows relatively low stress than FEM results. As the geometrical imperfections (Δ_g) increases, stress curves become gradually lowered.

비선형 네트웍 해석을 위해서 위와 같이 추정된 단일 트러스 요소의 하중-변위 곡선(PBC)을 6 차 다항식(1)을 이용한 최소자승법(least square fitting) 으로 내삽(interpolation)하여 트러스의 하중-변위 곡선에 사용하였다.

$$F_o(d) = A + Bd + Cd^2 + Dd^3 + Ed^4 + Fd^5 + Gd^6$$
(1)

비선형 네트웍 해석을 통해 얻어진 기하학적 결 함이 없는 덩어리 WBK의 완전 격자 모델(no defect)에 대한 응력-변형률 곡선을 Fig.5 에 나타내 었다. 단위셀을 이용한 유한요소해석(FEM)에 비해 전 영역에 걸쳐 약간 낮은 응력을 보였지만, 경향 은 흡사하게 얻어짐을 알 수 있었다.

2.3 기하학적 결함 모델

한편 기하학적 결함이 도입하기 위해 Fig.6 와 같이 살팔(착(건)롸 햩라(첛,샟) >>> 방랑원호로 '표 눈 둰차 (Standard deviation) Δ_g 의 가우시안 분포를 갖도록 모사하였다.

$$\vec{x} = \vec{x}_0 + \vec{\Delta}_g \tag{2}$$

이에 따른 트러스 길이의 통계적인 분포를 Fig.7 에 나타내었다.x 축은 각 트러스의 길이(dr)를,y 축 은 해당 길이의 트러스 개수(N(dr))를 로그좌표로 나타내었는데, 완전격자 모델의 경우는 모든 트러 스가 일정한 길이를 가지므로 한 점(dr=8.1mm)에 서 높은 피크(peak)를 보인다.

Fig. 6 A WBK truss model with geometrical imperfections (Δ_g =1.0mm) before deformation.

Fig. 7 The distributions of truss length for WBK truss model in normal compression. A model with a geometrical imperfection (Δ_g =0.3mm) shows Gaussian distributions for the truss lengths before and after the deformation.

Fig. 8 Force vs. displacement curves with Gaussian defects (Δ_p) for periodic boundary condition (PBC). The gray region represents a possible distribution of the curves by the Gaussian defect $(\Delta_p = 0.1)$

또한, 결함이 도입된 변형 전 모델(initial)은 트러 스 길이 분포가 가우스 형태이나 압축에 의한 변 형이 진행된 후 (final)에는 길이의 변화가 없는 수 평면에 놓여진 트러스와 수직변형에 의해 압축된 트러스가 각각 8.1mm 와 6.8mm 근처에서 피크를 형성함을 알 수 있다.

기하학적 결함 모델의 결함정도에 따른 응력 곡선을 앞의 Fig.5 에 나타내었는데, 결함의 정도 가 큰 경우(Δ_g =5.0mm)에 이르기까지 점차적으로 최대응력이 감소하는 경향을 보인다. 하지만, 결함 의 정도가 Δ_g <1.0mm 로 크지 않은 경우에는 완전 격자 모델과 크게 차이가 없으며, 이를 통해 비교 적 작은 기하학적 결함은 카고메 트러스 구조의 기계적 강도에 크게 영향을 미치지 않을 수 있음 을 확인하였다.

2.4 재료 결함 모델

재료결함 모델은 기하학적 결함이 없는 완전격 자와 같은 구조이지만, 트러스나 접합노드(브래이 징부)의 불균일한 특성을 고려하기 위해 트러스의 힘-변위(force-displacement) 선도에 일정한 결함 분 포를 도입하도록 하였다. 즉, 식 (1)으로 표현되는 단일 트러스 요소의 힘-변위 (F vs. d)관계식에서 아래 식 (3)과 같이 정의된 힘이 표준편차(standard deviation) Δ_p를 갖는 가우시안 분포를 갖게 함으로 써, 실제 시편이 갖는 결함이나 비 균일한 특성이 네트웍 해석에 반영되도록 하였다.

Fig. 9 Stress vs strain curves for WBK truss models (perfect and material imperfections). FEM result and experimental result for 3-layered WBK are added for the comparison with the simulation results.

참고로, Fig.8 에 네트웍 해석에 이용된 하중-변위 곡선에 가우스 분포의 재료 결함을 도입했을 때의 형태를 나타내었다. 결함이 없는 경우는 단일한 곡선(red line)으로 표현되지만, 재료 결함을 고려하 는 경우는 결함의 정도(Δp=0.1)에 따라 하중-변위 곡선이 특정한 영역에 분포될 수 있음을 나타낸다. 결함이 응력곡선에 미치는 영향을 보기 위해, 결함의 정도(Δ_p: variance)를 0.1 에서 0.6 까지 변화 시켜 보았다. 이로부터 얻어진 Fig.9 은 재료결함 모델의 해석 결과를 실험(Experiment)및 무한셀을 갖는 WBK 를 모사한 유한요소해석 결과(PBC)와 비교하여 나타내고 있다. 이로부터, 기하학적 결함 에 비해 재료 결함은 응력곡선에 비교적 급격한 변화를 주는 것으로 관측되었다. (Fig.5 참조) 즉, 표준편차(Δp)가 0.4 일 때까지는 완전 격자 곡선과 큰 차이를 보이지 않다가, 표준편차가 0.5 인 경우 최대응력이 완전격자(0.93MPa)의 60%인 0.55MPa 로 급격히 감소함을 보인다.

또한, 네트웍 해석 결과를 3 층 구조의 WBK 실 험 결과와 비교한 결과, 최대응력은 0.93MPa 에서 거의 일치함을 보였으나, 최대응력에 도달한 후에 는 실험결과가 완만한 감소를 보이는데 비해, 네 트웍 해석은 다소 빠른 감소를 보였다.

3. 결론

비선형 무작위 네트웍 해석법(Nonlinear Random Network Analysis)을 도입하여 카고메 트러스 구조 의 기계적 거동에 미치는 결함의 영향을 해석하였 다. 결함의 형태로는 기하학적 결함과 재료 결함 을 통계적인 가우시안 분포를 갖도록 하였다.

(1) 유한요소 해석을 통해 얻어진 단일 트러스 의 비선형 하중-변위 곡선을 네트웍 해석에 도입 하여 넓은 영역의 걸친 결함 정도에 따른 해석을 하였다. 이로부터 와이어로 제작된 WBK 의 실험 결과와 유사한 최대응력과 응력-변형률 곡선을 얻 을 수 있었다.

(2) 해석에 이용된 두 가지 결함 중, 기하학적 결함의 경우 결함의 정도가 증가함에 따라 최대응 력이 점진적인 감소를 보였으나, 재료 결함의 경 우 결함이 증가함에 따라 비교적 급격한 최대응력 변화가 관측되었다. 이 같은 해석을 통해, 벌크형 카고메 구조의 거시적인 기계적 거동은 트러스의 길이나 접합부의 위치와 연관된 기하학적 결함보 다는 트러스의 굴곡, 접합불량, 트러스나 브레이징 의 재료 결함등에 더 큰 영향을 받을 것으로 보여 진다.

한편, 본 연구에서는 벌크 카고메의 압축에 따 른 변형만을 고려하였으나, 더 일반적인 조건(예, 전단력을 가할 경우, 복합재의 형태로 제작된 카 고메 구조)하에서의 거동에 대한 해석도 필요할 것으로 보인다. 또한 접합패널과 카고메 내부 구 조와 접합 부분에서 발생할 수 있는 결함, 외부 변형이 비균일한 경우, 큰 변형이 가해졌을 때 관 측되는 내부 격자 구조 변형(phase transition)^{(11),(12)} 등은 거시적인 특성에 크게 영향을 미치는 결함의 형태로 고려되어야 할 것이다.

아울러, 본 연구를 위해 개발된 비선형 네트웍 해석법은 기계적 강도뿐 아니라 다양한 다른 특성 들(진동, 열, 전기)을 해석하는 도구로도 확장이 용이하므로, 카고메 구조와 같은 트러스 구조의 다기능 특성 해석에 효과적으로 사용될 수 있음을 확인하였다.

후 기

본 연구는 한국과학재단 특정기초연구(R01-2006-000-10349-0)지원을 받아 수행하였습니다. 관 계자 여러분께 감사 드립니다

참고문헌

- Wadley, H.N.G., Fleck, N.A., and Evans, A.G., 2003, "Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures," *Composite Science and Technology*, Vol.63, pp.2331-2343.
- (2) Hyun, S., Karlsson, A. M., Torquato, S. and Evans,

A. G., 2003, "Simulated Properties of Kagome and Tetragonal Truss Core Panel," *Int. J. Solids and Structures*, Vol. 40, pp.6989~6998.

- (3) Wang, J., Evans, A.G., Dharmasena, Wadley, H.N.G., 2003, "On the Performance of Truss Panels with Kagome Cores," *International Journal of Solids and Structures*, Vol.40, pp.6981~6988.
- (4) Kang, K.J., Jeon, G.P., Nah, S.J., Ju, B.S., and Hong, N.H., 2004, "A New Way to Manufacture Ultra Light Metal Structures," J. of the Korean Society of Mechanical Engineers, Vol.A-28, pp.296~303.
- (5) Kang, K.J. and Lee, Y.H., 2004, "Three-Dimensional Cellular Light Structures Directly Woven by Continuous Wires and the Manufacturing Method of the Same," Patent Pending PCT/KR2004/002864 /05 November
- (6) Lee, Y.H., Choi, J.E., Kang, K.J., 2006, "A new periodic cellular metal with Kagome trusses and its performance," *ASME International Mechanical Engineering Congress and Exposition, Chicago, USA*, p.IMECE2006-15467.
- (7) H. He and M. F. Thorpe., 1985, "Elastic Properties of Glasses," *Phys. Rev. Lett.*, Vol.54, p.2107.
- (8) D.J. Jacobs and M.F. Thorpe., 1995, "Generic Rigidity Percolation: The Pebble Game," *Phys. Rev. Lett.*, Vol.75, p4051.
- (9) W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1992, *Numerical Recipes in Fortran*, 2nd ed, Cambridge Univ. Press.
- (10) M.J. Quinn, 2003, *Parallel Programming in C with MPI and OpenMP*, McGraw Hill, Singapore.
- (11) F. Milstein and B. Farber, 1980, "Theoretical fcc-bcc Transition under [100] Tensile Loading," *Phys. Rev. Lett.*, Vol. 44, p277.
- (12) R.S. Hoy and M.O. Robbins, 2004, "Fcc-bcc transition for Yukawa interactions determined by applied strain deformation," *Phys. Rev. E*, Vol. 69, p.56103.
- (13) S. Hyun, J.E. Choi, K.J. Kang, 2007, "Mechanical Behaviors under Compression in Wire-Woven Bulk kagome Truss PCMs –Part I: Upper Bound solution with Uniform Deformation" (submitted to Conferences of the Korean Society of Material and Fracture Division).