• 제목/요약/키워드: Nonlinear Optimization Model

검색결과 461건 처리시간 0.026초

유연생산 시스템의 최적 복수 경로 계획 (Optimal Planning of Multiple Routes in Flexible Manufacturing System)

  • 김정섭
    • 한국경영과학회지
    • /
    • 제29권4호
    • /
    • pp.175-187
    • /
    • 2004
  • We consider the simultaneous selection of part routes for multiple part types in Flexible Manufacturing Systems (FMSs). Using an optimization framework we investigate two alternative route assignment policies. The one, called routing mix policy in the literature, specifies the optimal proportion of each part type to be produced along its alternative routes, assuming that the proportions can be kept during execution. The other one, which we propose and call pallet allocation policy, partitions the pallets assigned to each part type among the routes. The optimization framework used is a nonlinear programming superimposed on a closed queueing network model of an FMS which produces multiple part types with distinct repeated visits to certain workstations. The objective is to maximize the weighted throughput. Our study shows that the simultaneous use of multiple routes leads to reduced bottleneck utilization, improved workload balance, and a significant increase in the FMS's weighted throughput, without any additional capital investments. Based on numerical work, we also conjecture that pallet allocation policy is more robust than routing mix policy, operationally easier to implement, and may yield higher revenues.

AN AFFINE SCALING INTERIOR ALGORITHM VIA CONJUGATE GRADIENT AND LANCZOS METHODS FOR BOUND-CONSTRAINED NONLINEAR OPTIMIZATION

  • Jia, Chunxia;Zhu, Detong
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.173-190
    • /
    • 2011
  • In this paper, we construct a new approach of affine scaling interior algorithm using the affine scaling conjugate gradient and Lanczos methods for bound constrained nonlinear optimization. We get the iterative direction by solving quadratic model via affine scaling conjugate gradient and Lanczos methods. By using the line search backtracking technique, we will find an acceptable trial step length along this direction which makes the iterate point strictly feasible and the objective function nonmonotonically decreasing. Global convergence and local superlinear convergence rate of the proposed algorithm are established under some reasonable conditions. Finally, we present some numerical results to illustrate the effectiveness of the proposed algorithm.

고속 안정성을 고려한 쇽업소버 최적 설계 (Optimal Design of Shock Absorber using High Speed Stability)

  • 이광기;모종운;양욱진
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Study of nonlinear hysteretic modelling and performance evaluation for piezoelectric actuators based on activation functions

  • Xingyang Xie;Yuguo Cui;Yang Yu
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.133-143
    • /
    • 2024
  • Piezoelectric (PZT) actuators have been widely used in precision positioning fields for their excellent displacement resolution. However, due to the inherent characteristics of piezoelectric actuators, hysteresis has been proven to greatly reduce positioning performance. In this paper, five mathematical hysteretic models based on activation function are proposed to characterize the nonlinear hysteresis characteristics of piezoelectric actuators. Then the performance of the proposed models is verified by particle swarm optimization (PSO) algorithm and the experiment data. Thirdly, the fitting performance of the proposed models is compared with the classical Bouc-Wen model. Finally, the performance of the five proposed models in modelling hysteresis nonlinearity of piezoelectric drivers is compared, in terms of RMSE, MAPE, SAPE and operation efficiency, and relevant suggestions are given.

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

A Numerical Approach for Station Keeping of Geostationary Satellite Using Hybrid Propagator and Optimization Technique

  • Jung, Ok-Chul;No, Tae-Soo;Kim, Hae-Dong;Kim, Eun-Kyou
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary satellite. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then, this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Nonlinear simulation results have been shown to support such concept.

비선형 시스템을 위한 퍼지모델 기반 일반예측제어 (Fuzzy Model Based Generalized Predictive Control for Nonlinear System)

  • 이철희;서선학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

다항식 뉴럴 네트워크의 최적화: 진화론적 방법 (Optimization of Polynomial Neural Networks: An Evolutionary Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

다항식 뉴럴 네트워크의 최적화 : 진화론적 방법 (Optimization of Polynomial Neural Networks: An Evolutionary Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.