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AN AFFINE SCALING INTERIOR ALGORITHM VIA

CONJUGATE GRADIENT AND LANCZOS METHODS FOR

BOUND-CONSTRAINED NONLINEAR OPTIMIZATION†

CHUNXIA JIA∗ AND DETONG ZHU

Abstract. In this paper, we construct a new approach of affine scaling
interior algorithm using the affine scaling conjugate gradient and Lanczos
methods for bound constrained nonlinear optimization. We get the itera-
tive direction by solving quadratic model via affine scaling conjugate gradi-
ent and Lanczos methods. By using the line search backtracking technique,
we will find an acceptable trial step length along this direction which makes
the iterate point strictly feasible and the objective function nonmonoton-
ically decreasing. Global convergence and local superlinear convergence
rate of the proposed algorithm are established under some reasonable con-
ditions. Finally, we present some numerical results to illustrate the effec-
tiveness of the proposed algorithm..
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1. Introduction

In this paper we construct an affine scaling interior algorithm combining the
conjugate gradient with Lanczos methods to analyze the solution of optimization
subjective to the bound constraints on variable:

min f(x), x ∈ Ω = { x | l ≤ x ≤ u }, (1)

where f : Ω ⊂ <n → < is a given continuously differentiable mapping. The
vector l ∈ (< ∪ {−∞})n and u ∈ (< ∪ {+∞})n are specified lower and upper
bounds on the variables such that l < u.
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There are quite a few literatures proposing affine-scaling algorithm for solv-
ing problems appeared during the last few years. Sun in [13] gave a convergence
proof for an affine-scaling algorithm for convex quadratic programming without
nondegeneracy assumptions, and Ye [14] introduced affine scaling algorithm for
nonconvex quadratic programming. Classical methods also can be used to solve
(1), for example, conjugate gradient method, which can be easily programmed
and computed, is one of the most popular and useful method for solving large-
scale optimization problems. The idea of conjugate gradient path in uncon-
strained optimization is given in [2]. The path is defined as linear combination
of a sequence of conjugate directions which are obtained by applying standard
conjugate direction method to approximate quadratic function of unconstrained
optimization. The Lanczos method for solving the quadratic-model trust region
subproblem in a weighted l2-norm are proposed by Gould et al. in [6]. Combin-
ing Lanczos method with conjugate gradient path, we can construct a new path
[8, 11], which has both properties of Lanczos vectors and properties of conjugate
gradient path.

Stimulated by the progress in these aspects, in this paper, we propose an
affine scaling interior algorithm via the conjugate gradient and Lanczos methods
to solve (1). The organization of the article is as follows: In Section 2, we
state the affine scaling interior algorithm combining the conjugate gradient and
Lanczos method for solving (1). In Section 3, we prove the global convergence
of the proposed algorithm. Further, we establish that the proposed algorithm
has strongly global convergence and local convergence rate in Section 4. Finally,
the results of numerical experiments of the proposed algorithm are reported in
Section 5.

2. Algorithm

In this section we describe and design the affine scaling conjugate gradient and
Lanczos strategy in association with nonmonotonic interior point backtracking
technique for solving the bound-constrained nonlinear minimum problem (1)
and present an interior point backtracking technique which enforces the variable
generating strictly feasible interior point approximations to the solution.

Coleman and Li in [3] observed that the first order optimality condition of
(1) are equivalent to the nonlinear system of equations

D(x)−2∇f(x) = 0, x ∈ Ω. (2)

with a suitable scaling matrix

D(x) = diag{|φ1(x)|− 1
2 , |φ2(x)|− 1

2 , · · · , |φn(x)|− 1
2 }.

However, it was noted by Heinkenschloss et al. [10] that the equivalence between
(2) and the optimality condition of (1) holds for a rather general class of scaling
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matrices satisfying the conditions

φi(x)





= 0, if xi = li and gi > 0,
= 0, if xi = ui and gi < 0,
≥ 0, if xi ∈ {li, ui} and gi = 0,
> 0, else,

(3)

for all i = 1, · · · , n and all x ∈ Ω, where gi is the ith component of the gradient
of f at x, li, xi, ui are the ith components of l, x, u, respectively. In this work,
we allow the scaling matrix satisfying (3) to be from a rather general class, see
Assumption 5 below. The basic successive modified Newton step is

D−2
k (∇2

xxfk + Ck)dk = −D−2
k gk.

where Dk = D(xk), xk is a sequence of iterates that would be generated by the
to-be-proposed algorithm, ∇2

xxfk is the Hessian of f ,

Ck = Dkdiag{g1k, g2k, · · · gnk }Jφ
k Dk,

Jφ
k = Jφ(xk) where Jφ(x) ∈ <n×n is the Jacobian matrix of φ(x) whenever

|φ(x)| = (|φ1(x)|, |φ2(x)|, · · · , |φn(x)|)
is differentiable. Considering the transformation pk = Dkpk, the basic idea in
the proposed algorithm is based on the minimum value of affine scaling quadratic
programming subproblem is

min ψk(p) = f(xk) + gTk p+
1

2
pTHkp, (4)

where gk = D−1
k ∇f(xk), Hk = D−1

k (Bk +Ck)D
−1
k , Bk is the Hessian of f or its

approximation. Define Hk = Bk + Ck, gk = ∇f(xk), we can get the quadratic
programming model of f in original space:

min ψk(p) = f(xk) + gTk p+
1

2
pTHkp. (5)

We are now in a position to give a precise statement of the overall method.

Nonmonotonic affine scaling interior algorithm combining conju-
gate gradient and Lanczos methods
Initialization step
Choose parameters β ∈ (0, 1

2 ), ω ∈ (0, 1), ε > 0 and positive integer M as
nonmonotonic parameter. Let m(0) = 0 and ξ ∈ (0, 1), give a starting strict
feasibility interior point x0 ∈ int(Ω) ⊆ <n. Set k = 0, go to the main step.
Main step

(1) Evaluate fk = f(xk), gk = ∇f(xk), Dk, Ck and Mk = DT
k Dk.

(2) If ‖D−1
k gk‖ ≤ ε, stop with the approximate solution xk.

(3) ω0 = 0, d0 = 0, v1 = 0, r1 = ∇ψk(v1) = gk, y1 = M−1
k r1, d1 =

−M−1
k gk, θ1 = 1, γ1 =

√
〈r1, y1〉, ω1 = r1

γ1
, q1 = y1

γ1
. Let i = 1.
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(4) If

dTi Hkdi > 0 (6)

D−1
k ri 6= 0 (7)

go to the step 5, otherwise go to the step 6.
(5) Calculate

λi =
θ2i r

T
i yi

dTi Hkdi
,

vi+1 = vi + λidi,

δi = qTi Hkqi,

ri+1 = Hkqi − δiωi − γiωi−1,

yi+1 = M−1
k ri+1,

γi+1 =
√
〈ri+1, yi+1〉,

ωi+1 =
ri+1

γi+1
,

qi+1 =
yi+1

γi+1
,

θi+1 = −λiθiγi,

βi =
θi+1y

T
i+1Hkdi

dTi Hkdi
,

di+1 = −θi+1yi+1 + βidi.

Calculate

f(xk)− f(xk + vi+1) ≥ ξ
[
f(xk)− ψk(vi+1)

]
. (8)

If (8) is satisfied, set i ⇐ i+ 1, go to 4.
(6) If i = 1, pk = d1, otherwise, pk = vi.
(7) Choose αk = 1, ω, ω2, · · · , until the following inequality is satisfied:

f(xk + αkpk) ≤ f(xl(k)) + αkβg
T
k pk, (9)

with xk + αkpk ∈ int(Ω) (10)

where f(xl(k)) = max
0≤j≤m(k)

{f(xk−j)}.
(8) Set

xk+1 = xk + αkpk. (11)

(9) Take the nonmonotone control parameter m(k+1) = min{m(k)+1,M}.
Then set k ← k + 1 and go to step 1.
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Remark. The scalar αk given in (10) of step 7, denotes the step size along the
direction pk to the boundary on the variables l ≤ xk + αkpk ≤ u, that is,

α∗
k = min

{
max{ l

i − xi
k

pik
,
ui − xi

k

pik
}, i = 1, 2, · · · , n

}
, (12)

where αk = θkα
∗
k, θk ∈ (θ, 1], for some 0 < θ < 1 and θk − 1 = O(‖pk‖), xi

k

and pik are the ith components of xk and pk, respectively. If pik = 0, then set
li−xi

k

pi
k

=
ui−xi

k

pi
k

= +∞. The stepsize αk will ensure the step αkdk within the

boundary.

Properties of the conjugate gradient and Lanczos methods
Now, we give some properties of the conjugate gradient and Lanczos methods.

Lemma 1. Suppose that the directions qi and di are generated by the step 5 of
the Algorithm, 1 ≤ i ≤ l ≤ nk, the following properties hold:

qTi Mkqj = 0, 1 ≤ j < i ≤ l ≤ nk (13)

QT
i HkQi = Ti, i = 1, 2, · · · , nk (14)

rTi dj = 0, 1 ≤ j < i ≤ l ≤ nk (15)

dTi Hkdj = 0, i 6= j (16)

dTi Mkdj ≥ 0, 1 ≤ i, j ≤ nk (17)

where Qi = [q1, q2, · · · , qi] and the tridiagonal matrix Ti is

Ti =




δ1 γ2
γ2 δ2 γ3

. . .
. . .

. . .

δi−1 γi
γi δi



.

.
Proof. The proof is by induction. Noting

qT2 Mkq1 =
rT2 q1
γ2

=
1

γ2
(Hkq1 − δ1ω1)

T q1 =
1

γ2
(δ1 − δ1

rT1 y1
γ2
1

) = 0,

qT2 Hkq1 = qT2 (r2 + δ1ω1) = γ2 +
δ1
γ1

qT2 Mky1 = γ2,

rT2 d1 = −(Hkq1 − δ1ω1)
T y1 = −γ1q

T
1 Hkq1 + δ1

rT1 y1
γ1

= 0,

dT2 Hkd1 = (−θ2y2 + β1d1)
THkd1 = −θ2y

T
2 Hkd1 + β1d

T
1 Hkd1 = 0

and

dT2 Mkd1 = −θ2y
T
2 Mkd1 + β1d

T
1 Mkd1 = β1d

T
1 D

T
k Dkd1 ≥ 0,

we get that (13)-(17) hold for l = 2.
Assuming now that these five expressions are true for some l (the induction

hypothesis), we now show that they continue to hold for l + 1.
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We prove first (13) and (14). Because of the induction hypothesis of (13), we
have that

qTl ωl−1 = qTl
rl−1

γl−1
=

1

γl−1
qTl Mkyl−1 =

1

γl−1
qTl Mkγl−1ql−1 = 0.

By combining this equation with qTl ωl =
1
γ2
l

yTl rl = 1, we can deduce

qTl+1Mkql =
1

γl+1
rTl+1ql =

1

γl+1
(qTl Hkql − δlω

T
l ql − γlω

T
l−1ql) = 0

and

qTl+1Hkql = qTl+1(rl+1 + δlωl − γlωl−1) =
1

γl+1
yTl+1rl+1 = γl+1.

When i ≤ l − 1, we obtain

qTl+1Mkqi =
1

γl+1
(Hkql − δlωl − γlωl−1)

T qi

=
1

γl+1
[qTl (ri+1 + δiωi + γiωi−1)− γlω

T
l−1qi]

=
1

γl+1
[qTl ri+1 − γlω

T
l−1qi] = 0

and

qTl+1Hkqi = qTl+1(ri+1 + δiωi + γiωi−1) = 0,

therefore, the relations (13) and (14) continue to hold when l is replaced by l+1,
as claimed.

Next, we prove (15) and (16) with l replaced by l+1. By the definition of βl,
we deduce that

dTl+1Hkdl = (−θl+1yl+1 + βldl)
THkdl = 0.

By the induction hypothesis for (15), we have

qTl Hkdl−1 = qTl Hk(−θl−1yl−1 + βl−1dl−2) = −θl−1q
T
l Hkγl−1ql−1 = −θl−1γl−1γl

and

ωT
l−1dl−1 =

1

γl−1
rTl−1(−θl−1yl−1 + βl−1dl−2) = −θl−1γl−1.

From these two formulae, we find that the following inclusion holds:

rTl+1dl = (Hkql − δlωl − γlωl−1)
T (−θlyl + βl−1dl−1)

= −θlγlδl − βl−1θl−1γl−1γl + δlθlγl + γlβl−1θl−1γl−1 = 0.

When i ≤ l − 1, we also deduce that

rTl+1di = (Hkql − δlωl − γlωl−1)
T di = qTl Hkdi − γlω

T
l−1di = 0

and

dTl+1Hkdi = −θl+1y
T
l+1Hkdi + βld

T
l Hkdi = 0,
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where

yTl+1Hkdi = yTl+1Hk(−θiyi + βi−1di−1)

= βi−1y
T
l+1Hk(−θi−1yi−1 + βi−2di−2)

= · · ·
= βi−1βi−2 · · ·β1y

T
l+1Hkd1

= −βi−1βi−2 · · ·β1γl+1γ1q
T
l+1Hkq1 = 0.

Hence, the induction arguments hold for (15) and (16) also.
Finally, we prove (17). Noting

qTl+1Mkdl = qTl+1Mk(−θlyl + βl−1dl−1)

= −θlγlq
T
l+1Mkql + βl−1q

T
l+1Mkdl−1 = βl−1q

T
l+1Mkdl−1

= · · · = βl−1 · · ·β1q
T
l+1Mkd1 = 0,

we have that

dTl+1Mkdl = (−θl+1yl+1 + βldl)
TMkdl = βld

T
l Mkdl ≥ 0.

By the induction hypothesis for (17), we conclude that

dTl+1Mkdi = (−θl+1yl+1 + βldl)
TMkdi = βld

T
l Mkdi ≥ 0.

So (17) holds for all 1 ≤ i, j ≤ nk, as claimed. 2

Lemma 2. Suppose that ∇ψk(vi+1) = Hkvi+1 + gk = θi+1ri+1(see [6]), where
θi+1 = 〈ei+1, hi+1〉 and hi+1 satisfy Ti+1hi+1 + γ1e1 = 0, then we have

θi+1 = −λiθiγi (θ1 = 1).

Proof. From the definition of γi+1, we can get

rTi+1yi+1 = γ2
i+1. (18)

Noting vi+1 = v1 +

i∑

j=1

λjdj =

i∑

j=1

λjdj (v1 = 0) and

gTk yi+1 = γi+1r
T
1 qi+1 = γi+1y

T
1 Mkqi+1 = γ1γi+1q

T
1 Mkqi+1 = 0,

we deduce that

rTi+1yi+1 =
1

θi+1
(Hkvi+1 + gk)

T yi+1 =
1

θi+1
(

i∑

j=1

λjd
T
j Hkyi+1 + gTk yi+1)

=
1

θi+1
λid

T
i Hkyi+1 = −λiγ

2
i+1θiγi

θi+1
. (19)

Compare (18) with (19), we have

θi+1 = −λiθiγi.

2
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3. Global convergence analysis

Throughout this section we assume that f : Ω ⊂ <n → < is continuously
differentiable and bounded from below. Given x0 ∈ int(Ω) ⊂ <n, the algorithm
generates a sequence {xk} ⊂ int(Ω) ⊆ <n. In our analysis, we denote the level
set of f by

L(x0) = { x ∈ <n | f(x) ≤ f(x0), l ≤ x ≤ u }.
In order to discuss the properties of the proposed method in detail, we will

summarize as follows.

Lemma 3. Let the step vj be obtained from the algorithm, then

(1) ‖vj‖Mk
≤ ‖vj+1‖Mk

, where ‖x‖Mk
= (xTMkx)

1
2 , ∀x ∈ <n.

(2) The quadratic function ψk(vj) is monotonically decreasing for 1 ≤ j ≤ nk,
that is,

ψk(vj) ≥ ψk(vj+1).

Proof. (1) Noting v1 = 0, λi > 0 and vTj Mkdj =

j−1∑

i=1

λidiMkdj ≥ 0, we have

‖vj+1‖2Mk
= vTj+1Mkvj+1 = (vj + λjdj)

TMk(vj + λjdj)

= vTj Mkvj + 2λjv
T
j Mkdj + λ2

jd
T
j Mkdj ≥ ‖vj‖2Mk

,

so the conclusion (1) holds.
(2) Using the expression of ψk and vj , we obtain that

ψk(vj+1)− ψk(vj)

= gTk (vj+1 − vj) +
1

2
vTj+1Hkvj+1 − 1

2
vTj Hkvj

= λjg
T
k dj +

1

2
(

j∑

i=0

λidi)
THk(

j∑

i=0

λidi)− 1

2
(

j−1∑

i=0

λidi)
THk(

j−1∑

i=0

λidi)

= λjg
T
k dj +

1

2
λ2
jd

T
j Hkdj

=
1

2
λj [2g

T
k dj + θ2j r

T
j yj ].

Noting

gTk dj + θ2j r
T
j yj = dTj r1 + θjr

T
j (−θjyj + βj−1dj−1) = dTi (r1 −Hkvi − gk)

= dTi (r1 − r1 −
i−1∑

j=1

λjHkdj) = 0

and θ2j r
T
j yj ≥ 0, we get gTk dj ≤ 0, so 2gTk dj + θ2j r

T
j yj < 0, that is, ψk(vj+1) −

ψk(vj) ≤ 0. This completes the proof of this lemma. 2

The following lemma show the relation between the gradient gk of the ob-
jective function and the step pk generated by the proposed algorithm. We can
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see from the following lemma that the direction of the trial step is a sufficiently
descent direction.
Lemma 4. Let the step pk = vj be obtained from the algorithm, then
(1) {gTk vj} is monotonically decreasing, that is, gTk vj+1 ≤ gTk vj , 1 ≤ j ≤ nk.
(2) gTk pk satisfies the following sufficient descent condition

gTk pk ≤ −‖D−1
k gk‖2 min{1, λ1}. (20)

Proof. (1) From (17), we deduce

gTk vj+1 − gTk vj = gTk (vj+1 − vj) = λjg
T
k dj = −λjd

T
1 Mkdj ≤ 0.

that is, the conclusion (1) holds.
(2) If dT1 Hkd1 ≤ 0, then pk = v1 = d1 and

gTk pk = gTk d1 = −gTk M
−1
k gk = −‖D−1

k gk‖2.

If dT1 Hkd1 > 0, then there exists j0 ≥ 2 such that pk = vj0 . Noting {gTk vj} is

monotonically decreasing and gTk v2 = gTk (v1+λ1d1) = λ1g
T
k d1 = −λ1‖D−1

k gk‖2,
we have

gTk pk ≤ gTk v2 = −λ1‖D−1
k gk‖2 ≤ −‖D−1

k gk‖2 min{1, λ1}.

So the conclusion holds. 2

If there exist χD > 0, χH > 0 such that ‖D−1
k ‖ ≤ χD, ‖Hk‖ ≤ χH , then we

have

λ1 =
θ21r

T
1 y1

dT1 Hkd1
≥ ‖D−1

k gk‖2
‖D−1

k gk‖2 · ‖D−1
k ‖2 · ‖Hk‖

≥ 1

χ2
DχH

,

furthermore,

gTk pk ≤ −‖D−1
k gk‖2 min{1, 1

χ2
DχH

} = −C1‖D−1
k gk‖2, (21)

where C1 = min{1, 1
χ2
D
χH

}. 2

Lemma 5. Let the step pk be obtained from the algorithm, then the predicted
reduction satisfy the estimate:

f(xk)− ψk(pk) ≥ ‖D−1
k gk‖2 min{1, λ1

2
}. (22)

Proof. We consider first the case of dT1 Hkd1 ≤ 0. Here, we have pk = v1 = d1
and

f(xk)− ψk(pk) = −gTk d1 −
1

2
dT1 Hkd1 ≥ −gTk d1 = ‖D−1

k gk‖2.
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For the next case, consider dT1 Hkd1 > 0. Noting {ψk(vj)} is monotonically
decreasing, we obtain that

f(xk)− ψk(pk) ≥ f(xk)− ψk(λ1d1)

= −λ1g
T
k d1 −

1

2
λ2
1d

T
1 Hkd1 = λ1‖D−1

k gk‖2 − λ1

2
‖D−1

k gk‖2

=
λ1

2
‖D−1

k gk‖2 ≥ ‖D−1
k gk‖2 min{1, λ1

2
}.

So (22) holds. 2

The following assumptions are commonly used in convergence analysis of most
methods for the box constrained systems.
Assumption 1: f : <n → < is a continuously differentiable mapping, sequence
{xk} generated by the algorithm is contained in the compact set L(x0).
Assumption 2: ‖pk‖, D−1

k and Hk are uniformly bounded, that is, there exist

constants χp, χD and χH satisfy ‖pk‖ ≤ χp, ‖D−1
k ‖ ≤ χD and ‖Hk‖ ≤ χH for

all k.
Assumption 3: g(x) = ∇f(x) is Lipschitz continuous, that is, there exists a
constant γ such that

‖g(x)− g(y)‖ ≤ γ‖x− y‖ ∀x, y ∈ L(x0).

The following nondegenerate property is essential for convergence of the affine
scaling double trust-region approach given in [3].
Definition 1.1 (see [3]). A point x ∈ Ω is nondegenerate if, for each index i,

gi(x) = 0 =⇒ li < xi < ui. (23)

Problem (1) is nondegenerate if (23) holds for every x ∈ Ω.
Assumption 4: The first order optimality system associated to problem (1)
has no nonisolated solutions and the nondegenerate property of the system (1)
holds at any solutions of systems (1).
Assumption 5: $ is a constant and there exist $k ≥ $ such that

$k
|pjk|
|φj

k|
≤

{
xj
k − lj , if gjk > 0, and lj > −∞,

uj − xj
k, if gjk < 0, and uj < +∞.

We now ready to state one of our main results.
Theorem 1. Assume that Assumptions 1-5 hold. Let {xk} ⊂ int(Ω) be a
sequence generated by the algorithm. Then

lim inf
k→∞

‖D−1
k gk‖ = 0. (24)

Proof. According to the acceptance rule of αk in step 7, we have

f(xl(k))− f(xk + αkpk) ≥ −αkβg
T
k pk.

Taking into account that m(k + 1) ≤ m(k) + 1 and f(xk+1) ≤ f(xl(k)), we get

f(xl(k+1)) = max
0≤j≤m(k+1)

f(xk+1−j) ≤ max
0≤j≤m(k)+1

f(xk+1−j) = f(xl(k)).
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This means {f(xl(k))} is nonincreasing for all k and hence {f(xl(k))} is conver-
gent.

If the conclusion of the theorem is not true, there exists some ε > 0 such that

‖D−1
k gk‖ ≥ ε.

We can deduce from (9) and (21) that

f(xl(k)) = f(xl(k)−1 + αl(k)−1pl(k)−1)

≤ f(xl(l(k)−1)) + βαl(k)−1g
T
l(k)−1pl(k)−1

≤ f(xl(l(k)−1))− αl(k)−1βε
2C1. (25)

By the convergence of {f(xl(k))}, we can conclude

lim
k→∞

αl(k)−1 = 0, (26)

it follows from Assumption 2 that

lim
k→∞

αl(k)−1‖pl(k)−1‖ = 0. (27)

Similar to the proof of theorem in [7], we have

lim
k→∞

f(xk) = lim
k→∞

f(xl(k)), (28)

and therefore

lim
k→∞

αk = 0. (29)

If αk is determined by (9), we have

f(xk +
αk

ω
pk) > f(xl(k)) +

αk

ω
βgTk pk ≥ f(xk) +

αk

ω
βgTk pk,

that is,

f(xk +
αk

ω
pk)− f(xk) >

αk

ω
βgTk pk, (30)

On the other hand,

f(xk +
αk

ω
pk)− f(xk) =

αk

ω
gTk pk +

αk

ω

∫ 1

0

[
g(xk + t

αk

ω
pk)− g(xk)

]T
pkdt

≤ αk

ω
gTk pk +

1

2
γ(

αk

ω
)2‖pk‖2, (31)

where γ is Lipschitz constant for g(x). From (30) and (31), we deduce

αk

ω
gTk pk +

1

2
γ(

αk

ω
)2‖pk‖2 > β

αk

ω
gTk pk,

so

αk ≥ 2ω(β − 1)

γ‖pk‖2 gTk pk ≥ 2ω(1− β)

γχ2
p

C1ε
2 > 0. (32)

From the above formula, we can conclude that lim
k→∞

αk ≥ 2ω(1− β)

γχ2
p

C1ε
2 > 0,

which contradicts (29).
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If αk is determined by (10), let x∗ be a limit point of {xk}, then there exists
a subset K1 ⊂ {k} satisfies:

lim
k→∞,k∈K1

α∗
k = 0, lim

k→∞,k∈K1

xk = x∗.

From the expression of α∗
k, we know there exists an index j such that

max{ lj−xj
∗

pj
∗

,
uj−xj

∗
pj
∗

} = 0, so we can get a subset K2 ⊂ K1 such that:

lim
k→∞,k∈K2

max{ l
j − xj

k

pjk
,
uj − xj

k

pjk
} = 0.

Without loss of generality, we assume xj
∗ − lj = 0.

If pjk > 0, by pjk ≤ ‖pk‖ ≤ χp, we get that for sufficiently large k,

max{ l
j − xj

k

pjk
,
uj − xj

k

pjk
} =

uj − xj
k

pjk
>

uj − xj
∗

2χp
> 0.

If pjk < 0, by nondegeneration and the optimization condition, we get gj∗ > 0,

so when k is large enough, gjk > 0. By Assumption 5, we get lim
k→∞

φj
k = φj

∗ = 0,

furthermore,

max{ l
j − xj

k

pjk
,
uj − xj

k

pjk
} =

lj − xj
k

pjk
=

xj
k − lj

|pjk|
≥ $

|φj
k|

→ +∞ (k → ∞) (33)

which contradicts lim
k→∞,k∈K2

max{ l
j − xj

k

pjk
,
uj − xj

k

pjk
} = 0, so lim

k→∞
αk 6= 0.

Similarly, when xj
∗−uj = 0, we get lim

k→∞
αk 6= 0, which contradicts (29), hence

the conclusion of the theorem is true. 2

4. Properties of the local convergence

Theorem 1 indicts that at least one limit point of {xk} is a stationary point.
In this section we shall first extend this theorem to a stronger result and the
local convergent rate.
Theorem 2. Assume that the Assumptions 1-5 hold. Let {xk} be a sequence
generated by the proposed algorithm. Then

lim
k→+∞

‖D−1
k gk‖ = 0. (34)

Proof. Assume that the conclusion is not true, then there is an ε1 ∈ (0, 1) and a
subsequence {D−1

mi
gmi} such that for all mi, i = 1, 2, · · ·

‖D−1
mi

gmi‖ ≥ ε1.

Consider any index mi such that ‖D−1
mi

gmi‖ ≥ ε1. Using Assumption 3, we
have

‖g(x)− g(xmi)‖ ≤ γ‖x− xmi‖.
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Noting D(x) is continuous for x, we have there exists some δ > 0 such that

‖D−1(x)−D−1(xmi)‖ ≤ n− 1

2nχg
ε1

for all x which satisfy ‖x − xmi
‖ ≤ δ, where n can be some very large integer.

Hence, by defining the scalar

R = min{ n− 1

2nγχD
ε1, δ}

and the ball

B(xmi
, R) = {x|‖x− xmi

‖ ≤ R},
we can get if x ∈ B(xmi , R), then

‖D−1(x)g(x)‖ ≥ ‖D−1
mi

gmi
‖ − ‖D−1(x)g(x)−D−1

mi
gmi

‖
≥ ε1 − ‖D−1g −D−1gmi‖ − ‖D−1 −D−1

mi
‖ · ‖gmi‖

≥ ε1 − χD‖g − gmi‖ − χg‖D−1 −D−1
mi

‖
≥ ε1 − n− 1

2n
ε1 − n− 1

2n
ε1 =

1

n
ε1 = ε2,

where ε2 = 1
nε1. If the entire sequence {xk}k≥mi stays the ball B(xmi , R), we

would have ‖D−1
k gk‖ ≥ ε2 > 0 for all k ≥ mi. The reasoning in the proof of

Theorem 1 can be used to show that this scenario does not occur. Therefore,
the sequence {xk}k≥mi eventually leaves B(xmi , R), and there exist another
subsequence {D−1

ni
gni} such that

‖D−1
k gk‖ ≥ ε2, for mi ≤ k < ni

and

‖D−1
ni

gni‖ ≤ ε2,

for an ε2 ∈ (0, ε1).
The reasoning in the proof of Theorem 1 can be used to show that

lim
k→∞,mi≤k<ni

f(xl(k)) = lim
k→∞,mi≤k<ni

f(xk). (35)

According to the acceptance rule in step 7, we have

f(xl(k))− f(xk + αkpk) ≥ −αkβg
T
k pk ≥ αkβτε2C1 ≥ 0.

Similarly, we also get

lim
k→∞,mi≤k<ni

αk = 0. (36)

If αk is determined by (10), similar to the proof in Theorem 1, we have
lim

k→∞,k∈K
αk > 0, so αk is determined by (9). From the acceptance rule of αk in

(9) and (32), we have

0 = lim
k→∞,k∈K

αk ≥ lim
k→∞,k∈K

2ω(1− β)

γχ2
p

C1ε
2
2 > 0,
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which contradicts (36), so (34) holds. 2

We now discuss the convergence rate for the proposed algorithm. For this
purpose, it is show that for large enough k, the step size αk ≡ 1, lim

k→∞
θk = 1,

but it requires more assumptions.
Assumption 6: The strong second-order sufficient condition holds, that is,
there exists ζ > 0 such that

(D∗q)T (D−1
∗ H∗D−1

∗ )(D∗q) ≥ ζ‖D∗q‖2, ∀q ∈ <n. (37)

Assumption 7:

lim
k→∞

‖[Bk −∇2f(xk)]vj‖
‖vj‖ = 0, ∀j = 1, 2, · · · , n. (38)

Because Ck → C∗ = 0, by Assumption 7, we have

lim
k→∞

‖[Hk −∇2f(xk)]vj‖
‖vj‖ ≤ lim

k→∞
‖[Bk −∇2f(xk)]vj‖+ ‖Ckvj‖

‖vj‖ = 0, (39)

which means

vTj [∇2f(xk)−Hk]vj = o(‖vj‖2). (40)

Theorem 3. Assume that Hk is positive definite, Assumptions 1-7 hold and
{xk} is a sequence produced by algorithm which convergence to x∗, then the
convergence is superlinear, i.e.,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0. (41)

Proof. We prove first pk = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk for sufficiently large k.
From Lemma 1, we have

0 = θjr
T
j (

j−1∑

i=1

λidi) = θjr
T
j vj = (gk +Hkvj)

T vj = gTk vj + vTj Hkvj .
(42)

Using Assumption 6, we can get that for sufficiently large k,

vTj Hkvj ≥ ζ

2
‖Dkvj‖2. (43)

So, for sufficiently large k,

ζ

2
‖Dkvj‖2 ≤ vTj Hkvj = −gTk vj = −(D−1

k gk)
TDkvj ≤ ‖D−1

k gk‖ · ‖Dkvj‖,
(44)

that is, ‖Dkvj‖ ≤ 2
ζ ‖D−1

k gk‖, combining this formula with Theorem 2, we can
get

‖vj‖ ≤ ‖D−1
k ‖ · ‖Dkvj‖ ≤ 2

ζ
χD‖D−1

k gk‖ → 0. (45)
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Therefore,

|ψk(vj)− f(xk + vj)|
= |gTk vj +

1

2
vTj Hkvj − (gTk vj +

1

2
vTj ∇2f(xk)vj + o(‖vj‖2)|

= |1
2
vTj (Hk −∇2f(xk))vj − o(‖vj‖2)| = o(‖vj‖2).

By Assumption 6, we can get that D−1
k HkD

−1
k is positive definite uniformly for

sufficiently large k, so

f(xk)− ψk(vj) = −gTk vj −
1

2
vTj Hkvj

= (−θjrj +Hkvj)
T vj − 1

2
vTj Hkvj (46)

= −θjr
T
j vj + vTj Hkvj − 1

2
vTj Hkvj = −θjr

T
j (

j−1∑

i=0

λidi) +
1

2
vTj Hkvj

=
1

2
vTj Hkvj ≥ ζ

4
‖Dkvj‖2. (47)

Therefore,

f(xk)− f(xk + vj)

f(xk)− ψk(vj)
≥ 1− o(‖vj‖2)

f(xk)− ψk(vj)
≥ 1− o(‖vj‖2)

ζ
4‖Dkvj‖2

. (48)

Since ‖vj‖ = ‖D−1
k Dkvj‖ ≤ ‖D−1

k ‖‖Dkvj‖ ≤ χD‖Dkvj‖, we have
‖vj‖

‖Dkvj‖ ≤ χD

and hence

lim
k→∞

o(‖vj‖2)
‖Dkvj‖2 = lim

k→∞
o(‖vj‖2)
‖vj‖2 · ‖vj‖2

‖Dkvj‖2 = 0. (49)

Combining (48) with (49), we deduce that pk = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk
for sufficiently large k.

Next, we prove that pk = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk satisfies (9). Using
(45), we have

lim
k→∞

‖pk‖ = 0. (50)
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Because f(xk) is twice continuously differentiable, gTk pk = −pTkHkpk, by (37)
and (40), we have that

f(xk + pk) = f(xk) + gTk pk +
1

2
pTk∇2f(xk)pk + o(‖pk‖2)

= f(xk) + βgTk pk + (
1

2
− β)gTk pk +

1

2
(gTk pk + pTkHkpk)

+
1

2
pTk [∇2f(xk)−Hk]pk + o(‖pk‖2)

≤ f(xk) + βgTk pk − (
1

2
− β)pTkHkpk + o(‖pk‖2)

≤ f(xk) + βgTk pk − (
1

2
− β)

ζ

2
‖Dkpk‖2 + o(‖pk‖2).

By (49), we deduce that f(xk+pk) ≤ f(xk)+βgTk pk for large enough k, namely,

pk = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk satisfies (9).
Finally, we prove that (10) holds. Similar to the proof of Theorem 1, we know

there exists an index j such that

min{max{ l
i − xi

∗
pi∗

,
ui − xi

∗
pi∗

} i = 1, 2, · · · , n} = max{ l
j − xj

∗
pj∗

,
uj − xj

∗
pj∗

}.

In the case of lj < xj
∗ < uj , noting (50), we have lim

k→∞
α∗
k = +∞. Other-

wise, without loss of generality, we assume xj
∗ = lj . Consider the following two

cases: If pjk > 0, combing max{ lj−xj
k

pj
k

,
uj−xj

k

pj
k

} =
uj−xj

k

pj
k

with (50), we also have

lim
k→∞

α∗
k = +∞.

If pjk < 0, similar to the proof of (33), we get

lim
k→∞

max{ l
j − xj

k

pjk
,
uj − xj

k

pjk
} ≥ 1. (51)

From θk − 1 = O(‖pk‖) and (50), we have lim
k→∞

θk = 1, so αk = 1 when k is large

enough and pk = −D−1
k (D−1

k HkD
−1
k )−1D−1

k gk satisfies (10).

From above discussions, we obtain that if D−1
k HkD

−1
k is positive definite, the

new iterate step is xk+1 = xk + pk, pk is Newton or quasi-Newton step, so (41)
holds. 2

Theorem 3 means that the local convergence rate for the proposed algorithm
depends on the Hessian of objective function at x∗ and the local convergence rate
of the step. If dk becomes the Newton step, then the sequence {xk} generated
by the algorithm converges x∗ quadratically.
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5. Numerical experiments

In this section we present the numerical results. In order to check effectiveness
of the method, we take the elements of D(x)(see [3]) as

vi(x) =





xi − ui, if gi < 0, and ui < +∞,
xi − li, if gi ≥ 0, and li > −∞,
−1, if gi < 0, and ui = +∞,
1, if gi ≥ 0, and li = −∞,

(52)

and select the parameters as following: ε = 10−8, ξ = 0.02, β = 0.4, ω = 0.5.
The experiments are carried out on 6 test problems which are quoted from [5]
and [12]. NF and NG stand for the numbers of function evaluations and gradient
evaluations, respectively, M denotes the nonmonotonic parameter. The results
of numerical experiments are reported to show the effectiveness of the proposed
algorithm.

Experimental results

Problem the optimal solution and the optimal value M=0 M=3

name reference results results of algorithm NG NF NG NF

SC229 x∗ = (1, 1)T x∗ = (1, 1)T 156 158 159 160

f∗ = 0 f∗ = 5.5122 × 10−16

SC208 x∗ = (1, 1)T x∗ = (1, 1)T 53 64 54 60

f∗ = 0 f∗ = 3.5821 × 10−18

SC206 x∗ = (1, 1)T x∗ = (1, 1)T 5 5 5 5

f∗ = 0 f∗ = 1.9771 × 10−29

SC201 x∗ = (5, 6)T x∗ = (5, 6)T 2 2 2 3

f∗ = 0 f∗ = 0

Ferraris x∗ = (0.5, 3.14159)T x∗ = (0.5, 3.1416)T 13 13 13 13

Tronconi f∗ = 0 f∗ = 5.5164 × 10−20

Reklaitis x∗ = (3, 2)T x∗ = (3, 2)T 15 15 15 15

Ragsdell f∗ = 0 f∗ = 0
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