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AN AFFINE SCALING INTERIOR ALGORITHM VIA
CONJUGATE GRADIENT AND LANCZOS METHODS FOR
BOUND-CONSTRAINED NONLINEAR OPTIMIZATION'

CHUNXIA JIA* AND DETONG ZHU

ABSTRACT. In this paper, we construct a new approach of affine scaling
interior algorithm using the affine scaling conjugate gradient and Lanczos
methods for bound constrained nonlinear optimization. We get the itera-
tive direction by solving quadratic model via affine scaling conjugate gradi-
ent and Lanczos methods. By using the line search backtracking technique,
we will find an acceptable trial step length along this direction which makes
the iterate point strictly feasible and the objective function nonmonoton-
ically decreasing. Global convergence and local superlinear convergence
rate of the proposed algorithm are established under some reasonable con-
ditions. Finally, we present some numerical results to illustrate the effec-
tiveness of the proposed algorithm..
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1. Introduction

In this paper we construct an affine scaling interior algorithm combining the
conjugate gradient with Lanczos methods to analyze the solution of optimization
subjective to the bound constraints on variable:

min f(z), z€Q={z|I<z<u}l, (1)

where f : Q@ C R” — R is a given continuously differentiable mapping. The
vector [ € (RU {—o00})™ and u € (RU {4+00})™ are specified lower and upper
bounds on the variables such that | < u.
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There are quite a few literatures proposing affine-scaling algorithm for solv-
ing problems appeared during the last few years. Sun in [13] gave a convergence
proof for an affine-scaling algorithm for convex quadratic programming without
nondegeneracy assumptions, and Ye [14] introduced affine scaling algorithm for
nonconvex quadratic programming. Classical methods also can be used to solve
(1), for example, conjugate gradient method, which can be easily programmed
and computed, is one of the most popular and useful method for solving large-
scale optimization problems. The idea of conjugate gradient path in uncon-
strained optimization is given in [2]. The path is defined as linear combination
of a sequence of conjugate directions which are obtained by applying standard
conjugate direction method to approximate quadratic function of unconstrained
optimization. The Lanczos method for solving the quadratic-model trust region
subproblem in a weighted l-norm are proposed by Gould et al. in [6]. Combin-
ing Lanczos method with conjugate gradient path, we can construct a new path
[8, 11], which has both properties of Lanczos vectors and properties of conjugate
gradient path.

Stimulated by the progress in these aspects, in this paper, we propose an
affine scaling interior algorithm via the conjugate gradient and Lanczos methods
to solve (1). The organization of the article is as follows: In Section 2, we
state the affine scaling interior algorithm combining the conjugate gradient and
Lanczos method for solving (1). In Section 3, we prove the global convergence
of the proposed algorithm. Further, we establish that the proposed algorithm
has strongly global convergence and local convergence rate in Section 4. Finally,
the results of numerical experiments of the proposed algorithm are reported in
Section 5.

2. Algorithm

In this section we describe and design the affine scaling conjugate gradient and
Lanczos strategy in association with nonmonotonic interior point backtracking
technique for solving the bound-constrained nonlinear minimum problem (1)
and present an interior point backtracking technique which enforces the variable
generating strictly feasible interior point approximations to the solution.

Coleman and Li in [3] observed that the first order optimality condition of
(1) are equivalent to the nonlinear system of equations

D(z)*Vf(z) =0, z € Q. @)
with a suitable scaling matrix
D(x) = diag{|¢' (x)| 7}, [6*(2)| 7F, - |67 ()| "F).

However, it was noted by Heinkenschloss et al. [10] that the equivalence between
(2) and the optimality condition of (1) holds for a rather general class of scaling
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matrices satisfying the conditions

=0, ifa®=10 and gi_> 0,
=0, ifz'=u’andg’ <0,

¢'(z) >0, ifz'e{l’,u'}and g' =0, (3)
>0, else,
foralli=1,--- ,n and all x € Q, where ¢’ is the ith component of the gradient

of f at x, I*, z*,u’ are the ith components of I, z, u, respectively. In this work,
we allow the scaling matrix satisfying (3) to be from a rather general class, see
Assumption 5 below. The basic successive modified Newton step is

D 2(V2, fu + Cr)dy = =D} % gy

where Dy, = D(zy), xy is a sequence of iterates that would be generated by the
to-be-proposed algorithm, V2 _ f;, is the Hessian of f,

Ci = Dydiag{gi, g7, -~ i} J¢ D,
J;f = J?(x1) where J?(z) € R"*" is the Jacobian matrix of ¢(z) whenever

|6(2)] = (I¢' ()], |¢*(2) .-, |¢" (2)])
is differentiable. Considering the transformation p, = Dypy, the basic idea in
the proposed algorithm is based on the minimum value of affine scaling quadratic
programming subproblem is

A 1=

min ¢y (p) = f(2k) + P+ 55" Hib, (4)
where g, = D; 'V f(zy), Hi, = Dy, '(Bi, + Ci)D, ', By is the Hessian of f or its
approximation. Define Hy = By + Ck,gr = V f(zk), we can get the quadratic
programming model of f in original space:

min Yy(p) = f(z2) + o p+ 30" Hyp. (5)

We are now in a position to give a precise statement of the overall method.

Nonmonotonic affine scaling interior algorithm combining conju-

gate gradient and Lanczos methods
Initialization step
Choose parameters 8 € (0,3), w € (0,1), € > 0 and positive integer M as
nonmonotonic parameter. Let m(0) = 0 and £ € (0,1), give a starting strict
feasibility interior point g € int(2) C R"™. Set k = 0, go to the main step.
Main step

(1) Evaluate fk = f(l‘k), gk = Vf(xk), Dk,Ck and Mk = DkTDk.

(2) If | Dy ' gx|| < &, stop with the approximate solution zj.

(B3)wop =0, dy =0, v =0, 711 = Vhp(v1) = gr,y1 = M, 'r1,dy =

—Mk_lgk,el = 1,’}/1 = 1/ <7‘1,y1>,w1 = %,ql = % Let 7 = 1.
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d Hyd; > 0 (6)

D 'ry #0 (7)

go to the step 5, otherwise go to the step 6.
(5) Calculate

N = 07! yi
! dl' Hy.d;’
vit1 = v+ Aidi,
51' = q;THkQ’M
riv1 = Hpg — diw; — viwi—1,
Yivr = M i,
Yi+1 =V <7‘z’+17 yi+l>7
Wi41 = rija
Yi+1
Yi+1
qi+1 = —
o Yi+1
9i+1 = —>\i9ﬂi,
5 = Oit1yiy 1 Hids
3 - bl
dI Hy.d;
div1 = —0ip1Yit1 + Bid;.
Calculate
F(@x) = Flan +vin) = €[ (on) = vnlvien)]. (8)

If (8) is satisfied, set i < i+ 1, go to 4.
(6) If i = 1, pr, = dy, otherwise, py = v;.

(7) Choose ay =1, w, w?, --- , until the following inequality is satisfied:
flar+owpr) < flauw)) + B pr, 9)
with  xp + arpr € int(Q) (10)

where f(zyx)) = 0<§g§;{(k){f($k—j)}~
(8) Set
Tyl = Tk + QpPk. (11)

(9) Take the nonmonotone control parameter m(k+1) = min{m(k)+1, M }.
Then set k < k + 1 and go to step 1.
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Remark. The scalar ay given in (10) of step 7, denotes the step size along the
direction p to the boundary on the variables I < xj + arpr < u, that is,

L R e
7 kaiik}71:]~a2""an}a (12)
y4 D

where ay, = Oraj, 0 € (0,1], for some 0 < 0 < 1 and 6, — 1 = O(||pxl|), =},
and p}C are the ith components of z; and py, respectively. If pz = 0, then set
l"fm}'C o uifxfc _
ik = =

a) = min { max{

- +00. The stepsize aj will ensure the step apd) within the
k

boundary.
Properties of the conjugate gradient and Lanczos methods

Now, we give some properties of the conjugate gradient and Lanczos methods.

Lemma 1. Suppose that the directions q; and d; are generated by the step 5 of
the Algorithm, 1 < i <1 < ng, the following properties hold:

qf Myq; =0, 1<j<i<li<my

(13)
rId; =0, 1<j<i<lI<mny (15)
dTHyd; =0, i#j (16)
dTMyd; >0, 1<i,j<ny (17)
where Q; = [q1, q2, -+, ¢ and the tridiagonal matriz T; is
01 72
Y2 02 73
T, = ‘ .
di—1 Vi
Vi 61

Proof. The proof is by induction. Noting

T T
T 1 1 r
@ Myqr = Lo _ — (Hpq1 — 6rw1) g1 = — (61 — 61— le) =0,
Y2 Y2 V2 7
1)
@ Hyn = @ (r2+6w) =12+ quQTMkyl = Y2,
1
T T T T?yl
rody = —(Hpqr —0wi)' y1 = =791 Hequ + 61 =0,
1
dy Hpdy = (—=0y2 + prdi)" Hidy = —0ay; Hidy + B1d] Hydy =0

and
dy Mydy = —02y5 Mydy + B1d] Mydy = Brdi Di Dydy > 0,
we get that (13)-(17) hold for I = 2.

Assuming now that these five expressions are true for some [ (the induction
hypothesis), we now show that they continue to hold for [ + 1.
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We prove first (13) and (14). Because of the induction hypothesis of (13), we
have that

T 1 1
w1 =q = = —¢ Myy_1 = ——q Myy_1q1-1 = 0.
Yi—1 Yi—1 Yi—-1

By combining this equation with qlTwl = ,y%lerl =1, we can deduce
L

1
at Mg = . 17“17;1(11 = (¢ Hyqr — 6wl @1 — mwiqq) =0
+

Vi+1

and
1
a1 Hoqr = gl (risn + 8w — ywi—1) = rleH?”lH = Y41
+1
When i <[ — 1, we obtain
1
G Megi = —— (Heqr — 6wy — yiwi—1) " i
Yi+1
1
= —[qf (rig1 + Siwi + Yiwi—1) — Nwi1 4@
Yi+1
1

= T_H[QZTTiJrl - Wlwﬁﬂh] =0

and
T T _
G1Hrqi = @41 (Tig1 + diwi + viwi—1) = 0,

therefore, the relations (13) and (14) continue to hold when [ is replaced by 41,
as claimed.

Next, we prove (15) and (16) with [ replaced by [+ 1. By the definition of g;,
we deduce that

di Hidy = (—0141y141 + Bidy) " Hydy = 0.
By the induction hypothesis for (15), we have
qf Hpdi—1 = qf Hy(—0-1yi—1 + Bi—1di—2) = —011¢] Hiyi—iqi—1 = —0-1vi-1m

and

1
wiqdi—y = —rL  (—0—1y1-1 + Bi—1di—2) = —0_1vi—1.

V-1
From these two formulae, we find that the following inclusion holds:
rigd = (Hyq — dwr — ywi—1) " (=0 + Bimidi—1)

= =0 — B0y + a0y + b1 -1vi-1 = 0.
When i <[ — 1, we also deduce that
rid; = (Hiq — G — ywi—1) " ds = ¢f Hyd; — yw_1d; = 0
and

Ay Hyd; = =01y Hid; + Byd] Hyd; = 0,
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where
Vi Hedi = gl He(=0;y; + Bim1di—1)
= Bic1yia He(=0;-1yi—1 + Bi—2d;—2)

= Bi1Bi—2- 51sz+1de1
= —Bic1Bi—2 - Brysinal Hegr = 0.

Hence, the induction arguments hold for (15) and (16) also.
Finally, we prove (17). Noting

At Mydi = gl My(—0y + Bi_adi—1)
= —0ma i Mear + Bi—1al Mydi—1 = Br-1qi 1 Mydi—1
= - =Bt Bigl Mydy =0,
we have that
dlo i Mydy = (= 01419141 + Bidy) " Mydy = Byd] Mydy > 0.
By the induction hypothesis for (17), we conclude that
iy Myd; = (—6141y141 + Bidi)" Myd; = Bid] Myd; > 0.
So (17) holds for all 1 <4, j < ng, as claimed. O

Lemma 2. Suppose that Vi, (viy1) = Hpvir1 + gk = Oi17i41 (see [6]), where
Oiv1 = (€ir1, hig1) and hiyy satisfy Tiy1hip1 + y1e1 = 0, then we have

Oir1 = —Xibiy; (01 =1).

Proof. From the definition of 7,41, we can get
Tz‘T+1yi+1 = ’Yi2+1- (18)
Noting Vig1 = V1 + Z/\jdj = Z)\jdj (’Ul = 0) and
j=1 j=1

R Yit1 = Vi1 Gi1 = Vir1Yi MiGiv1 = 71%i+101 Migiv1 = 0,
we deduce that

1 1 <
Ty = H(Hkvi-&-l + 1) Y1 = TH(Z Njdj Hyyir + 9i, Yir)
7 1 ]:1
1 NivZ 107
= 7A1d?Hkyl+1 = —M. (19)
Oit1 Oit1

Compare (18) with (19), we have
Oir1 = — Xl
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3. Global convergence analysis

Throughout this section we assume that f : @ C R" — R is continuously
differentiable and bounded from below. Given xo € int(2) C 1", the algorithm

generates a sequence {xy} C int(2) C N”. In our analysis, we denote the level
set of f by

L(zo) ={zeR" [ f(z) < f(z0), ISz <u}
In order to discuss the properties of the proposed method in detail, we will
summarize as follows.
Lemma 3. Let the step v; be obtained from the algorithm, then
(1) ;] az, < lvjsallar,, where |[2]|ar, = (27 Mya)?, Vo € R,
(2) The quadratic function ¥y (v;) is monotonically decreasing for 1 < j < ng,
that is,
Pr(vs) > Pr(vitr)-
j—1
Proof. (1) Noting vy =0, A; > 0 and vf Myd; =Y "Xid; Myd; > 0, we have
i=1
i1l = v Mrvizr = (v; + Ajd;)T My (vj + Ajd;)
= v Myv; +2Xj0] Myd; + Nd) Myd; > ||vs]l3,,
so the conclusion (1) holds.
(2) Using the expression of ¢, and v;, we obtain that

Vi (vjt1) — Yr(v))

1
= gi(vjs1—vy)+ —v] Hyvj

27
j—l j—1

= \gid ZA )T Hy( Z)\ d;) (Z Xidi) " Hi (D Nids)
=0 =0

= Ngidj+ /\QdTde

1
T
5’()]-+1Hkvj+1 —

1
= iAj[ng d; + 62 STy y]]

Noting
grhd; +05rTy; = djri+0;r] (—0y;+ Bj_1d;1) = d} (r1 — Hyvi — gi)
i—1
= dl(ri—r1—> NHpd;)) =0
j=1
and 02rTy; > 0, we get gf'd; <0, so 2g/d; + 03rTy; <0, that is, ¢ (vj11) —
Vg (v]) < 0. This completes the proof of this lemma. o

The following lemma show the relation between the gradient g, of the ob-
jective function and the step pi generated by the proposed algorithm. We can
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see from the following lemma that the direction of the trial step is a sufficiently
descent direction.

Lemma 4. Let the step pr = v; be obtained from the algorithm, then

(1) {giv;} is monotonically decreasing, that is, gl vjt1 < givj, 1 <j < ny.
(2) g pr satisfies the following sufficient descent condition

gipe < —[|1 Dy g]|* min{1, A} (20)
Proof. (1) From (17), we deduce
Gk Vi1 = gk V5 = i (Vi1 — v3) = Njgg dj = —A;jdi Myd; < 0.

that is, the conclusion (1) holds.
(2) If d¥ Hydy < 0, then p, = v; = d; and

gk =g di = —gi My g = —[| D " gi]|*.
If d] Hydy > 0, then there exists jo > 2 such that p, = vj,. Noting {g} v;} is
monotonically decreasing and gf va = gi (v1 +A1d1) = Mgt di = =\ || Dy, gk ?,
we have

gk < give = =MDy gel* < 1Dy gel|* min{1, A}

So the conclusion holds. O
If there exist xp > 0,xz > 0 such that |D,. || < xp, || Hk|| < xm, then we
have

- By 1D g |I? _ 1
df Hydy = ||Di il IDH P - [Hell — xDxa”
furthermore,
_ . 1 _
g P < — 1Dy gel* min{1, ———} = —C1|| D gul, (21)
XDXH
where C; = min{1, -~—}. O

X%XH
Lemma 5. Let the step pi be obtained from the algorithm, then the predicted
reduction satisfy the estimate:

F(ee) — vulp) = DG gull? ming1, 3} (22)

Proof. We consider first the case of d¥ Hyd; < 0. Here, we have py = v; = d;
and

1 _
flar) — vlpr) = —gi dy — §dTde1 > —gpdy = || Dy, gill.
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For the next case, consider di Hyd; > 0. Noting {tx(v;)} is monotonically
decreasing, we obtain that

flzr) = velpr) = flzw) — ve(Mdh)
1 _ A _
= —Mgidy — 5N} Hydy = M| Dy i |* — 5105w

ALy e _ . A
= 2Dt gl > D7 gl minf1, ).

So (22) holds. O
The following assumptions are commonly used in convergence analysis of most

methods for the box constrained systems.

Assumption 1: f:R" — R is a continuously differentiable mapping, sequence

{1} generated by the algorithm is contained in the compact set L(xg).

Assumption 2: ||pgl|, D,;l and Hj, are uniformly bounded, that is, there exist

constants Xp, xp and xg satisfy |[pr|| < xp, Dyl < xp and ||Hy| < xu for

all k.

Assumption 3: g(z) = Vf(z) is Lipschitz continuous, that is, there exists a

constant « such that

lg(x) =gl < ~llz =yl Yo,y € L(zo).
The following nondegenerate property is essential for convergence of the affine
scaling double trust-region approach given in [3].
Definition 1.1 (see [3]). A point = € Q is nondegenerate if, for each index i,
gd(x)=0 = I'<a’ <u’ (23)
Problem (1) is nondegenerate if (23) holds for every = € ).
Assumption 4: The first order optimality system associated to problem (1)
has no nonisolated solutions and the nondegenerate property of the system (1)
holds at any solutions of systems (1).
Assumption 5: w is a constant and there exist wy > w such that
- |p7€| < xi — lj‘, if gi > 0, and le> —00,
lgn] — L W — xy, if gl <0, and v/ < +o0.
We now ready to state one of our main results.
Theorem 1. Assume that Assumptions 1-5 hold. Let {xr} C int(Q) be a
sequence generated by the algorithm. Then

liminf | D} x| = 0. (24)
k—o0

Proof. According to the acceptance rule of ay, in step 7, we have
flxwy) — flae + arpr) > —owBay pr-
Taking into account that m(k +1) < m(k) + 1 and f(zrs1) < f(z1(k)), we get

f(@irr1)) = Ogj;nn?ﬁﬂ)f(z’f“‘j) < Ogjgnﬁszlf(xk—H—j) = f(zi))-
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This means { f(2;x))} is nonincreasing for all £ and hence {f(z;x))} is conver-

gent.
If the conclusion of the theorem is not true, there exists some ¢ > 0 such that
1Dy grll > e
We can deduce from (9) and (21) that
fiwy) = f@imw)y—1 + amy—1Pik)—1)
< f@amw)-1)) + Bouw) 191k 1 Pi(k)—1
< f@mam-1)) — qu—18€*Ch. (25)
By the convergence of { f(z;x))}, we can conclude
Hm a1 =0, (26)

it follows from Assumption 2 that

) a[[pagry -1l = 0. (27)
Similar to the proof of theorem in [7], we have
lim f(zp) = lm fzyw), (28)
k—o0 k—o0
and therefore
lim ay = 0. (29)
k—o00

If ay is determined by (9), we have
Jog + %pk) > fxiwy) + %591{]% > f(zy) + %ﬁg;{pm
that is,
Fen+ i) = f(a) > = Bglp. (30)
On the other hand,

1 T
677 (675 (675 675
flxk + Upk) — f(xr) ngTpk + ;/ {g(mk + t;pk) —g(zr)| prdt
0

&k T L Qo 2
< £ (=2 , 31
< oipe+ () el (31)

where «y is Lipschitz constant for g(«). From (30) and (31), we deduce

(677 T 1 (673 2 2 (692 T
- —_ - > - R
o 9Pk + 57 () pell™ > B gk pr
SO
2w(B —1 2w(l —
o> 2P, 2002y (32)
Yol X
2w(1 —
From the above formula, we can conclude that klim ap > MC&GQ > 0,
—00 D

which contradicts (29).
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If o, is determined by (10), let . be a limit point of {z)}, then there exists
a subset K1 C {k} satisfies:

a; =0 T = Ty.

lim , lim
k—oo,ke k—o00,k€EK,

From the expression of aj, we know there exists an index j such that

Pz wi—gi
max{—=, “="} = 0, so we can get a subset Ko C K; such that:
Pl Pl
. V— ) wl—gd
lim  max{ 3 k,ij k1 =o.
k—o00,ke2 pk pk

Without loss of generality, we assume -1 =0.
If p;. >0, by p). < [|pkll < xp, we get that for sufficiently large ,

R J_ d o pd Jo_
l Ty :z:k}_u xk>u T
V2 S Y

Dy Py Py 2X17

max{ > 0.

If pi < 0, by nondegeneration and the optimization condition, we get gi > 0,
so when k is large enough, gi. > 0. By Assumption 5, we get klim ¢l =¢l =0,
—00
furthermore,
e —) V—al ol -l w
k. 7 k1= jk: k > — = 400 (k—o00) (33)

max{— TREPY,
Py Py P ‘pk| |¢k‘

17— xi ul — zfg
which contradicts ~ lim  max{———=, ———*=1} =0, so lim o} # 0.
k—o00,keEX2 pi: p-;c k—o0

Similarly, when 27 —u/ = 0, we get klim ay, # 0, which contradicts (29), hence
— o0

the conclusion of the theorem is true. O

4. Properties of the local convergence

Theorem 1 indicts that at least one limit point of {z)} is a stationary point.
In this section we shall first extend this theorem to a stronger result and the
local convergent rate.

Theorem 2. Assume that the Assumptions 1-5 hold. Let {x} be a sequence
generated by the proposed algorithm. Then

. —1 o
im 1D gl = 0. (34)

Proof. Assume that the conclusion is not true, then there is an €; € (0,1) and a
subsequence {D;llgmi} such that for all m;,i =1,2,---

HD;}gml > €.

Consider any index m; such that |
have

D;ﬁgmi > €1. Using Assumption 3, we

| <Az =z,

lg(x) = g(@m,)
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Noting D(x) is continuous for z, we have there exists some § > 0 such that
n—1
2nxg

for all x which satisfy ||z — z,,|| < d, where n can be some very large integer.
Hence, by defining the scalar

1D~ (2) = D™ (wm,)

| <

€1

n

-1
1)
2n'yXD€1’ }

R = min{
and the ball
B(xm,, R) = {z||z — zm,|| < R},
we can get if x € B(z,, R), then

1D~ @)g(@)l = D5l gm
>

- HDil(x)g(x) - Dr:z}gmq

€1 — |Dilg_Dilgmi _”Dil_D;} '”gmi
> 1= x0llg = gm.| = xgI D" = D1l
n—1 n—1 1
> € — €1 —

€1 = —€1 = €2
2n 2n n ’

where eo = L¢;. If the entire sequence {zy}x>m, stays the ball B(z,,, R), we
would have || D} 'gx|| > €2 > 0 for all k > m;. The reasoning in the proof of
Theorem 1 can be used to show that this scenario does not occur. Therefore,
the sequence {zy}r>m, eventually leaves B(z,,, R), and there exist another
subsequence {D;, gy, } such that

||Dlzlng Z €2, for m; S k< n;
and

S €2,
for an €3 € (0,¢€1).
The reasoning in the proof of Theorem 1 can be used to show that
flzymy) = i lim f(zk). (35)

1m
k—oo,m;<k<n; —oo,m;<k<n;

According to the acceptance rule in step 7, we have

Fl@wy) — f ok + arpr) > —arBgilpr > arfreCy > 0.
Similarly, we also get
aj = 0. (36)

1m
k—oo,m;<k<n;

If ay is determined by (10), similar to the proof in Theorem 1, we have

lim  ag > 0, so o is determined by (9). From the acceptance rule of ay in
k—o00,ke

(9) and (32), we have

0= O[k>

2w(l —
= 1m = Mcﬂfg > 0,
k—o0,keC k—o00,ke YX

P
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which contradicts (36), so (34) holds. ad

We now discuss the convergence rate for the proposed algorithm. For this

purpose, it is show that for large enough k, the step size ap = 1, klim O =1,
— 00

but it requires more assumptions.
Assumption 6: The strong second-order sufficient condition holds, that is,
there exists ¢ > 0 such that

(D.q)" (D' H.D; ') (Dsq) > ¢||D.g|?, Vg € R (37)

Assumption 7:

i B — V2 f ()],

ko0 vl

=0,Vj=12-,n. (38)

Because Cy — C, = 0, by Assumption 7, we have
NHr = VA @o)lvsll _ oy [1Be = VA f@)lvill + [Crvsll

lim < lim 0, (39)
ko0 [an ko0 [l
which means
vi [V2f(xx) = HiJo; = o(]|v;|*). (40)

Theorem 3. Assume that Hy is positive definite, Assumptions 1-7 hold and
{zx} is a sequence produced by algorithm which convergence to x., then the
convergence is superlinear, i.e.,

lim lrss = 2ol _ 0. (41)
k— o0 ||$k — a?*H

Proof. We prove first p, = —Dk_l(Dk_lHka_l)*le_lgk for sufficiently large k.
From Lemma 1, we have

j—1
0= ejTJ‘T(Z Aid;) = ‘gjroUj = (gr + HkUj)TUj = g,{vj + UJTH;CUJ».
i=1

(42)
Using Assumption 6, we can get that for sufficiently large k,
o vy > S | Deas (13)
So, for sufficiently large k,
¢ - _
S I1Dwv;* < v Hyvy = —gi'v; = —(Dy ' gi)" Divy < (D g - ||Dkvj||7( )
44

that is, || Dyl < %HD,;lg;CH, combining this formula with Theorem 2, we can
get

_ 2 _
ol < 1D - 1 Dwvj || < SxolIDy; tgrll — 0. (45)
¢
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Therefore,

[Vr(vj) — f(or + vy)]

1 1
= |giv;+ §UngkUj — (ghv; + §U]-Tv2f($k)vj + o([[v; )]

S (Hi = 9 @)y — ol 1) = ol ).

By Assumption 6, we can get that D,;lH lezl is positive definite uniformly for
sufficiently large k, so

1
fxr) = x(v)) = —ggvj — §UJTHkvj
1
= (—0;r; + Hkvj)ij — §vaHkvj (46)

i—1
1 e 1
— 79j7’jrvj + UJTHkvj — EUJTHkvj = 79j’r’]T( E Aldz) + iverk’Uj
1=0

1 ¢

= 5v; Hivj > 2| Deoy . (47)
Therefore,

Jlaw) = flex ) oy o([lv;11*) S1_ CO(HUJ‘||2) . (43)

f(ar) — ¥n(v)) f(ar) — ¥n(v;) S| Dyvj |12

Since [|v; | = [[Dg " Dyvs | < 1D |1 Dxvs ]| < xollDivsl, we have phle < xp

and hence
ool ool gl
lim ————~Z% = lim . =0. 49
O D2~ A% Tsl2 Dk, P (49)

Combining (48) with (49), we deduce that p, = —D,;l(Dllekafl)_1DlzlglC
for sufficiently large k.

Next, we prove that p, = —D; (D, 'HyD; ")~'D; ' gy satisfies (9). Using
(45), we have

lim ||py|| = 0. (50)
k— o0
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Because f(xy) is twice continuously differentiable, ¢! px = —pi Hypy, by (37)
and (40), we have that

flae+pr) = flae) +glpe+ pk PV f(2i)pk + o(||px?)
= f(zx)+ Bgipr + (% - B)gipr + %(gfpk + pi Hipr)
+ 25TV F (k) — Hilpr + o(pi ]2

2
< flan) + Bolpe — (5 — Ok Hymn + o(lel)

< flm)+ Belpe— (5~ D)1 Dl + ol lplP).

By (49), we deduce that f(zy+pk) < f(xx)+ Bgl pi for large enough k, namely,
pr = —D; '(D; 'H,.D;, ')~ D; ' gy, satisfies (9).
Finally, we prove that (10) holds. Similar to the proof of Theorem 1, we know
there exists an index j such that
min{max{ _.x*,u_.x*}izl, 2, --+, n} = max{ — 1.
4 j 24 Pl Pl

In the case of I/ < 2] < w/, noting (50), we have klim aj = 4oo. Other-
— 00

wise, without loss of generality, We assume 2 = l7. Consider the following two

J )

cases: If p/ > 0, combing max{ - ,u7;wk} = u]pj L with (50), we also have
k k k
lim aj = +o0.
k—oo
If p; < 0, similar to the proof of (33), we get
— xk w — xi
lim max{ 5 > 1. (51)
k—o0

pk pk

From 6, —1 = O(||pk||) and (50), we have klim 0r =1, so a; = 1 when k is large
— 00

enough and pj, = —D; (D, ' Hy.D; ') 1Dy L g, satisfies (10).

From above discussions, we obtain that if D,;lH lejl is positive definite, the
new iterate step is xx1 = T + pi, pr is Newton or quasi-Newton step, so (41)
holds. |

Theorem 3 means that the local convergence rate for the proposed algorithm
depends on the Hessian of objective function at * and the local convergence rate
of the step. If dy becomes the Newton step, then the sequence {zy} generated
by the algorithm converges x, quadratically.
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5. Numerical experiments

In this section we present the numerical results. In order to check effectiveness

of the method, we take the elements of D(z)(see [3]) as

2t — ', if ¢* <0, and u’ < +oo,
qﬂ(m) _ ot =1 if gZ: >0, and li_> —00,
-1, if ¢ <0, and u* = 400,
1, if g >0, and I’ = —o0,

(52)

and select the parameters as following: ¢ = 1078, £ = 0.02, 8 = 0.4, w = 0.5.

The experiments are carried out on 6 test problems which are quoted from [5]

and [12]. NF and NG stand for the numbers of function evaluations and gradient
evaluations, respectively, M denotes the nonmonotonic parameter. The results
of numerical experiments are reported to show the effectiveness of the proposed

algorithm.
Experimental results
Problem the optimal solution and the optimal value M=0 M=3
name reference results results of algorithm NG NF NG NF
SC229 z* = (1,1)7 z* = (1,17 156 | 158 | 159 | 160
ff=0 f* =5.5122 x 10716
SC208 z* = (1,7 z* = (1,17 53 64 | 54 60
ff=0 f* =3.5821 x 10718
SC206 z* = (1, )T z* = (1,17 5 5 5 5
ff=0 f*=1.9771 x 10~2°
SC201 z* = (5,6)T z* = (5,6)T 2 2 2 3
fr=0 fr=0
Ferraris | z* = (0.5,3.14159)T | z* = (0.5, 3.1416)7 13 13 13 13
Tronconi ff=0 f* =5.5164 x 1072°
Reklaitis z* = (3,2)7 z* = (3,2)T 15 15 15 15
Ragsdell ff =0 ff=0
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