• 제목/요약/키워드: Nonlinear Modulation

검색결과 208건 처리시간 0.028초

반도체 레이저의 변조특성에서 비선형 이득에 관한 연구 (Analysis of nonlinear gain in modulation characteristics of semiconductor lasers)

  • 엄진섭;김창봉
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.93-100
    • /
    • 1998
  • In this paper we analyze the effect of nonlinear gain on laser modulation characteristics applying a small-signal analysis to the rate equation which includes a nonlinear gain term. Also we analyze the resonance frequency and the damping factor which determine laser modulation characteristics, define K factor which is the proportionality factor between resonance frequency and damping factor, and conclude that the decrease in K factor is due to increases in differential gain and no correlation between K factor and nonlinear gain is identified.

  • PDF

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • 비파괴검사학회지
    • /
    • 제34권6호
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

320 Gbps 강도 변조 직접 검파 WDM 시스템의 채널 보상에서 상호 위상 변조의 영향 (Effect of Cross Phase Modulation on Channel Compensation in 320 Gbps Intensity Modulation / Direct Detection WDM Transmission Systems)

  • 이성렬;김지웅;손성찬
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1134-1140
    • /
    • 2004
  • 320 Gbps WDM 시스템의 전송로에 색 분산과 자기 위상 변조 외에 상호 위상 변조 현상(XPM ; Cross Phase modulation)이 존재하는 경우 XPM 현상이 광 펄스 왜곡 보상에 미치는 영향을 광섬유분산 계수와 변조 파형 형식에 따라 분석해 보았다. 본 논문에서 고찰한 WDM 시스템은 전체 전송 링크 중간에 HNL-DSF (Highly Nonlinear Dispersion Shifted Fiber)를 비선형 매질로 이용한 광 위상 공액기를 두어 보상하는 MSSI (Mid-Span Spectral version) 기법에 기초를 두고 있다. MSSI가 적용 된다고 하더라도 WDM 채널간 XPM의 영향이 존재하면 전체적인 보상 정도가 감소하여 최대 전송 채널 전력의 크기가 광섬유 분산 계수에 관계하여 줄어드는 것을 확인할 수 있었고, WDM 시스템의 광섬유 분산 계수가 클수록 임의의 채널에 왜곡을 유도하는 XPM의 영향을 크게 감소시킬 수 있는 것을 알 수 있었다. 아울러 XPM의 영향을 최소화하기 위해 WDM 시스템에 분산 계수가 큰 광섬유를 사용하는 경우 전송 펄스 형식을 RZ보다 오히려 NRZ로 하게 되면 모든 채널을 매우 비슷한 정도로 보상할 수 있다는 것을 확인하였다.

수치 파동 수조를 이용한 비선형파의 파형변화와 속도분포 해석 (Spatial Modulation of Nonlinear Waves and Their Kinematics using a Numerical Wave Tank)

  • 구원철;최가람
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.12-16
    • /
    • 2009
  • In this study, the wave profiles and kinematics of highly nonlinear waves at various water depths were calculated using a 2D fully nonlinear Numerical Wave Tank (NWT). The NWT was developed based on the Boundary Element Method (BEM) with the potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme by 4th-order Runge-Kutta time integration. The spatial variation of intermediate-depth waves along the direction of wave propagation was caused by the unintended generation of 2nd-order free waves, which were originally investigated both theoretically and experimentally by Goda (1998). These free waves were induced by the mismatch between the linear motion of wave maker and nonlinear displacement of water particles adjacent to the maker. When the 2nd-order wave maker motion was applied, the spatial modulation of the waves caused by the free waves was not observed. The respective magnitudes of the nonlinear wave components for various water depths were compared. It was found that the high-order wave components greatly increase as the water depth decreases. The wave kinematics at various locations were calculated and compared with the linear and the Stokes 2nd-order theories.

비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가 (Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique)

  • 박선종;임홍재;곽효경
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.651-658
    • /
    • 2012
  • 이번 연구에서는 비선형 음향효과를 기반으로 한 비선형 초음파 변조 기법을 통해 열손상 콘크리트의 미세균열 정도를 평가할 수 있는 방법을 제안하였다. 화재 시 콘크리트 구조물은 물리적, 화학적 변화에 따른 콘크리트 내 미세균열이 발생하므로, 기존 초음파 비파괴 기법의 민감도 한계를 극복한 비파괴 기법의 도입이 필요하다. 비선형 초음파 기법은 초음파와 저주파의 변조파로부터 열손상 평가 인자인 비선형인자를 측정하며, 이는 열손상 콘크리트의 미세균열에 적합한 민감도를 가진다. 이 연구에서는 SEM 관측, 열손상 전후 콘크리트의 투수공극량 변화 측정으로부터 수열온도에 따라 미세균열이 급격하게 발생함을 보였으며, 수열온도별 콘크리트의 초음파 전파속도 측정을 통해 제안된 방법의 민감도를 검증하였다. 추가적으로 열손상에 따른 미세균열이 콘크리트의 성능저하에 미치는 영향을 파악하고자 열손상 콘크리트 시편의 압축강도 측정을 수행하였다. 측정값 및 실험값의 연관성을 파악하여 비선형 초음파 변조 기법이 열손상 콘크리트의 미세균열 평가에 적합함을 보였으며, 향후 압축강도 추정에 대한 적용 가능성을 확인하였다.

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

광증폭 전송시스템에서 Modulation Instability에 의한 비선형 왜곡의 분석 및 광링크 보상구조의 제안 (Analysis on Nonlinear Distortion due to Modulation Instability and Proposal of Link Structure for Compensation in Optical Amplified Transmission Systems)

  • 이용원;김용범;이명문;유진태;박진우
    • 한국통신학회논문지
    • /
    • 제28권5A호
    • /
    • pp.316-322
    • /
    • 2003
  • 본 논문에서는 광증폭 전송시스템에서 중요한 성능제한 요소인 modulation instability (MI)에 의한 비선형 왜곡을 보상하기 위해서 그 특성을 이론적으로 분석하고, 이를 토대로 MI를 보상하는 광 링크 구조를 제안한다. MI 보상 광링크 구조는 optical phase conjugators (OPCs)와 dispersion compensating fibers (DCFs)를 이용하여 MI 의한 분산을 보상하도록 설계하였다. 제안된 보상구조는 시뮬레이션 실험에서 500 km 광전송의 경우에 기존의 구조에 비해 그 성능이 크게 향상됨을 확인할 수 있었다.