• 제목/요약/키워드: Nonlinear Interface Model

검색결과 173건 처리시간 0.03초

닫힘균열의 1차원 모델을 이용한 고조파 발생에 대한 파라미터 연구 (Parameter Study of Harmonics Generation Using One-dimensional Model of Closed Crack)

  • 양승용;김노유
    • 한국철도학회논문집
    • /
    • 제14권5호
    • /
    • pp.398-403
    • /
    • 2011
  • 균열이 용접부 내와 같은 잔류응력의 영향을 받는 곳에 존재할 경우, 균열은 닫힘균열로 존재할 수 있으며, 인장과 압축에 대하여 비대칭적인 거동을 보이게 된다. 이러한 비선형 균열에 대하여 균열면에서 발생하는 고조파를 이용한 초음파 탐지 기법이 활발히 연구되고 있다. 본 연구에서는 비선형 접촉면에서 발생하는 고조파에 대한 파라미터 연구를 수행하였다. 본 연구는 일반적인 3차원 균열로 나아가기 위한 기초연구의 성격을 띄고 있다. 압축과 인장에 대해 각기 다른 선형 거동을 나타내는 접촉면을 가정하였고 1차원 문제를 고려하였다. 기본주파수 성분에 대한 2차고조파 성분의 비를 다양한 강성비, 입사파의 주파수, 접촉면의 두께에 대하여 조사 하였다.

모형시험과 수치해석을 이용한 조적식 석축옹벽의 거동 특성 (Behavior of Dry-stone Segmental Retaining Wall Using Physical Modeling and Numerical Simulation)

  • 김성수;목영진;정영훈
    • 한국지반공학회논문집
    • /
    • 제27권9호
    • /
    • pp.25-36
    • /
    • 2011
  • 조적식 석축옹벽의 거동 특성을 규명하기 위하여 실내 모형시험과 수치해석을 수행하였다. 실내 모형시험에서 옹벽 블록과 뒤채움재의 변위를 측정하기 위해 PIV 기법의 디지털 이미지 해석을 실시하였다. 유한요소 수치해석을 위해 상용프로그램인 ABAQUS를 사용하였다. 모형시험에서 관찰된 뒤채움재의 변위 발생 과정은 파괴면의 형성이 점진적임을 보여준다. 수치해석 결과에서 석축옹벽의 시공 과정에서 발생하는 전체적인 수평 토압 분포는 기존의 Rankine 이론과 큰 차이가 없지만, 뒤채움재의 내부 마찰각과 석축을 구성하는 석재 간의 마찰각이 작으면 토압의 분포가 불규칙해짐을 확인하였다.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

STRESS ANALYSIS WITH NONLINEAR MODELLING OF THE LOAD TRANSFER CHARACTERISTICS ACROSS THE OSSEOINTEGRATED INTERFACES OF DENTAL IMPLANT

  • Lee Seung-Hwan;Jo Kwang-Hun
    • 대한치과보철학회지
    • /
    • 제42권3호
    • /
    • pp.267-279
    • /
    • 2004
  • A modelling scheme for the stress analysis taking into account load transfer characteristics of the osseointegrated interfaces between dental implant and surrounding alveolar bone was investigated. Main aim was to develop a more realistic simulation methodology for the load transfer at the interfaces than the prefect bonding assumption at the interfaces which might end up the reduced level in the stress result. In the present study, characteristics of osseointegrated bone/implant interfaces was modelled with material nonlinearity assumption. Bones at the interface were given different stiffness properties as functions of stresses. Six different models, i.e. tens0, tens20, tens40, tens60, tens80, and tens100 of which the tensile moduli of the bones forming the bone/implant interfaces were specified from 0, 20, 40, 60, 80, and 100 percents, respectively, of the compressive modulus were analysed. Comparisons between each model were made to study the effect of the tensile load carrying abilities, i.e. the effectivity of load transfer, of interfacial bones on the stress distribution. Results of the present study showed significant differences in the bone stresses across the interfaces. The peak stresses, however, were virtually the same regardless of the difference in the effectivity of load transfer, indicating the conventional linear modelling scheme which assumes perfect bonding at the bone/implant interface can be used without causing significant errors in the stress levels.

SIP말뚝의 주면저항력 예측 모델 제안 (Suggestion of Evaluation Formula for Skin Resistance of SIP)

  • 정형식;임해식;김정수
    • 한국지반환경공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.59-66
    • /
    • 2003
  • 건설공사에서 발생하는 환경문제에 대한 관심이 고조되는 가운데 기성 말뚝을 항타하는 과정에서 유발되는 소음, 진동문제를 해결하기 위해 저소음, 저진동 공법인 매입말뚝공법이 많이 적용되고 있다. 국내에서는 매입말뚝공법으로 SIP공법이 주로 사용되고 있다. 그러나 아직까지 SIP공법에 관한 합리적인 지지력 산정식이 제시되어있지 못한 실정이다. 이에 대해 본 연구에서는 SIP 말뚝의 주면저항력 특성을 고찰하여 이러한 문제점들을 개선, 보완하기 위하여 다양한 조건에서 SIP말뚝 주면과 지반사이의 경계면에 대하여 직접전단 시험을 실시하였다. 시험 결과를 토대로 통일분류상 SM, SC 지반에서의 SIP말뚝 주면저항력 특성을 고찰하고 해당 지반에서 주면저항력 산정식을 제시하였다. 또한, 말뚝 경계요소의 저항력에 대한 새로운 비선형 수치 모델식과 계수산정식을 제안하였다.

  • PDF

A Modified Shooting Method Technique for the Analysis of the Limited Slip Capacity of UHPFRC-NC Composite Structure

  • Han, Sang-Mook;Wu, Xiangguo;Kim, Sung-Wook;Kang, Su-Tae
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.1061-1064
    • /
    • 2008
  • Shear connectors have a finite slip capacity because of the mechanism by which they transfer the shear between UHPFRC and NC elements. At high degree of shear connection, non-linear analysis techniques are required to allow for compressive plasticity and tensile cracking behaviour of the elements. As with all non-linear problems, a closed form solution is difficult to find. A Modified Shooting Method Technique is developed here for non-linear analysis of UHPFRC/concrete composite. The initial effective moment is derived according to the prestressing force. The composite structure is divided into small segments which length is much less than the length of the structure and it can be assumed that the forces and displacements within each segment are constant. An equivalent analysis in composite girders would be to fix the slip strain in each segment and develop a moment curvature relationship for this slip strain in each segment. Additive forces and moment analysis on each section of the segments are analyzed by MSMT. Finally the ultimate slippage of the interface can be evaluated by the MSMT model. This paper presents a nonlinear analysis method for limited slip capacity of UHPFRC-NC interface.

  • PDF

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.

매설흄관의 설계하중 결정에 관한 연구 (A Study on the Determination of Design Load for Buried Hume Pipeline)

  • 오치남;정성교;장기태
    • 한국지반공학회지:지반
    • /
    • 제5권2호
    • /
    • pp.19-32
    • /
    • 1989
  • 매설흄관의 거동을 해석하기 위하여 흙의 쌍곡선 모델, 비선형 이력모델 및 흙-구조체 접촉면 모 델을 사용한 유한요소법에 의하여 흄관에 작용하는 연직(설계)하중을 계산하였으며, 이를 고전이론 인 Marston-Spangler이론 등과 비교·분석하였다. 수치해석을 통하여 고전이론에서 고려되지 못했 던 각종 토질상수와 터파기 형태별의 영향을 포함하여 흙덮개, 터파기 폭 등의 영향을 관찰하였다. 부가적으로 철장 실무자들이 쉽게 이용할 수 있도록 설계하중을 구하는 방법을 제안하였다.

  • PDF