• Title/Summary/Keyword: Nonlinear Finite Element Analysis

Search Result 1,931, Processing Time 0.028 seconds

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis

  • Kim, T.H.;Cheon, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.63-79
    • /
    • 2012
  • The purpose of this study is to evaluate the behavior and strength of prestressed concrete deep beams using nonlinear analysis. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, the RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of prestressed concrete. The smeared crack approach was incorporated. A bonded or unbonded prestressing bar element is used based on the finite element method, which can represent the interaction between the prestressing bars and concrete of a prestressed concrete member. The proposed numerical method for the evaluation of behavior and strength of prestressed concrete deep beams is verified by comparing its results with reliable experimental results.

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube (사각관의 수치 모델링 및 동적 붕괴 해석)

  • 강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석)

  • Kwon, Ki-Tae;Han, Hwa-Taik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석)

  • Kweon, Gi-Tae;Han, Hwa-Taik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.