• 제목/요약/키워드: Nonlinear Crack Interface

검색결과 29건 처리시간 0.024초

Measurements of Sub- and Super Harmonic Waves at the Interfaces of Fatigue-Cracked CT Specimen

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate ($LiNbO_3$) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonies in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

Estimation of a mixed-mode cohesive law for an interface crack between dissimilar materials

  • Song, Sung-Il;Kim, Kwang-Soo;Kim, Hyun-Gyu
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.35-51
    • /
    • 2016
  • In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR (transparent thermoplastic) resin is inversely estimated by the field projection method using numerical solutions and experimentally measured displacements. Displacements in a region far away from the crack tip are measured by digital image correlation technique. An inverse analysis, the field projection method formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the interface crack is also obtained from measured displacements in this study.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

비선형 경사 균열면에서의 고조파 발생 특성 해석 (Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface)

  • 김노유;양승용
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.376-387
    • /
    • 2012
  • 비선형 스프링 모델과 섭동법을 기초로 비선형 균열면에 경사 입사된 초음파에 의해 발생되는 2차 고조파 초음파의 크기를 계산하였다. 비선형 균열계면에서 만들어지는 반사파와 굴절파의 기본주파수 성분과 2차 고조파 성분의 크기를 입사각과 균열계면의 계면강성을 변화키면서 조사하였다. 계면강성에 관계없이 균열계면이 초음파 진행 방향과 비슷한 경우 반사와 굴절파 모두에서 2차 고조파의 발생은 거의 없었지만, 그렇지 않은 경우에는 계면 입사각은 물론 계면 강성에 따라 2차 고조파의 크기는 크게 변화하였다. 투과파는 물론 반사파에서도 2차 고조파 성분이 유의성 있게 발생됨을 수치 해석을 통해 확인하였다.

GFRP로 보강된 RC보의 계면박리파괴 해석모델 (An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP)

  • 김규선;심종성
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

Reflection and Transmission of Acoustic Waves Across Contact Interfaces

  • Kim, Noh-Yu;Jhang, Kyung-Young;Lee, Tae-Hoon;Yang, Seung-Yong;Chang, Young-Chul
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.292-301
    • /
    • 2008
  • A linearized model for hysteretic acoustic nonlinearity of imperfectly joined interface is proposed and analyzed by using Coulomb damping to investigate the characteristics of the reflection and transmission coefficients for harmonic waves at the contact interface. Closed crack is modeled as non welded interface that has nonlinear discontinuity condition in displacement across its boundary. Based on the hysteretic contact stiffness of the contact interface, the reflected and transmitted waves are determined by deriving the tractions on both sides of the interface in terms of the discontinuous displacements across the interface. It is found that the amplitudes of the reflected and transmitted waves are dependent on the frequency and the hysteretic stiffness. As the frequency of the incident wave increases, the higher reflection and lower transmission are obtained. It also shows that the hysteresis of the interface increases the reflection coefficient, but reduces the transmission coefficient. A fatigue crack is also made in aluminum specimen to demonstrate these characteristics of the reflection and transmission of contact interfaces.

초음파의 비선형 특성을 이용한 미세균열 평가 (Evaluation of Micro Crack Using Nonlinear Acoustic Effect)

  • 이태훈;장경영
    • 비파괴검사학회지
    • /
    • 제28권4호
    • /
    • pp.352-357
    • /
    • 2008
  • 구조물의 안전 보장 문제에 있어 재료의 파손 이전에 미세균열을 검출하는 것은 매우 중요하다. 비선형 초음파 기법은 일반적인 초음파 기법보다 미세결함에 민감하기 때문에 이를 이용하여 비파괴적으로 구조물이나 재료의 건전성을 진단하는 방법이 주목받고 있다. 계면접촉에 의한 비선형 초음파 효과는 초음파가 내부의 미세 균열에 입사될 때 미세균열면에서 응력과 변위가 비선형 관계를 가지고, 이에 의해 파가 왜곡되어 그 결과 고조파 성분이 발생하는 현상이다. 본 연구에서는 이러한 비선형 초음파 기법의 적용가능성을 알루미늄 시편에 인위적으로 발생시킨 피로균열을 대상으로 실험적으로 검증하고자 하였다. 이를 위해 V-노치를 갖는 A16061의 피로균열 시험편을 준비하고, 균열방향으로 2차 고조파 성분의 크기를 측정하였다. 실험결과 미세균열에서 고조파 성분이 크게 발생하며 이 기법에 의한 균열깊이 측정이 일반적인 반사파의 6 dB drop법보다 정확함을 확인하였다.