• 제목/요약/키워드: Nonholonomic constraints

검색결과 54건 처리시간 0.027초

데드비트 및 디지털 반복제어에 의한 고차 체인드 시스템의 제어 (High order chained system control using deadbeat and iterative control)

  • 남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.455-461
    • /
    • 2007
  • In this paper a state steering strategy for high order chained system is presented. High order chained system can be derived from the acceleration constraints that cannot be integrable. The system classified as a nonholonomic system cannot be controlled to its equilibrium points by continuous and time-invariant controller. Using variable transformation two sub system can be obtained from the high order chained system. Deadbeat control and iterative state steering methods are proposed to control the system. Simulation results are given to show the effectiveness of the proposed control scheme.

백스테핑을 이용한 이동 로봇의 경로 제어기의 설계 (Trajectory Controller Design of Mobile Robot Systems based on Back-stepping Procedure)

  • 이기철;이성렬;류신형;고재원;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.23-26
    • /
    • 2000
  • Generally, the wheel-driven mobile robot systems, by their structural property, have nonholonomic constraints. These constraints are not integrable and cannot be written as time derivatives of some functions with respect to the generalized coordinates. Hence, nonlinear approaches are required to solve the problems. In this paper, the trajectory controller of wheeled mobile robot systems is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation, the trajectory controller is applied to differentially driven robot system and car-like mobile robot system on the assumption that the trajectory planner be given.

  • PDF

격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어 (Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam)

  • 이근유;서진호;오명석;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

대화력전 임무수행을 위한 저고도 비행 무인공격기의 경로계획 (Path Planning of the Low Altitude Flight Unmanned Aerial Vehicle for the Neutralization of the Enemy Firepower)

  • 양광진;김시태;정대한
    • 한국군사과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.424-434
    • /
    • 2012
  • This paper presents a path planning algorithm of the unmanned aerial vehicle for the neutralization of the enemy firepower. The long range firepower of the ememy is usually located at the rear side of the mountain which is difficult to bomb. The path planner not only consider the differential constraints of the Unmanned Aerial Vehicle (UAV) but also consider the final approaching angle constraint. This problem is easily solved by incorporating the analytical upper bounded continuous curvature path smoothing algorithm into the Rapidly Exploring Random Tree (RRT) planner. The proposed algorithm can build a feasible path satisfying the kinematic constraints of the UAV on the fly. In addition, the curvatures of the path are continuous over the whole path. Simulation results show that the proposed algorithm can generate a feasible path of the UAV for the bombing mission regardless of the posture of the tunnel.

전방향 이동성을 갖는 안정한 볼봇 개발 (Development of Stable Ballbot with Omnidirectional Mobility)

  • 박재한;김순철;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.40-44
    • /
    • 2013
  • The ball-shaped mobile robot, so called ballbot has single point contact on ground and low energy consumption in motion because of the reduced friction. In this paper, a new ballbot is presented, which has omnidirectional mobile platform inside of it as a driving system. Thus the ballbat has omnidirectional mobility without nonholonomic constraints. Kinematics and inverse kinematics of the ballbat is derived also in this paper.

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어 (Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot)

  • 정우진;유광현
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구 (Study on Hybrid Control for Motion Control of Mobile Robot Systems)

  • 임미섭;임진모;임준홍;오상록
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

초음파센서 기반 이동로봇의 새로운 네비게이션 기술 개발 (Development of a New Navigation Technology for Mobile Robot Based on Sonar Sensors)

  • 노연판쿠에트;한성현
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.664-674
    • /
    • 2009
  • This paper presents the theoretical development of a complete navigation problem of a non-holonomic mobile robot by using sonar sensors. To solve this problem, a new method to compute a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constraints of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. Different experiments in populated environments have proved to be very successful. Our method is able to guide the mobile robot named KUM-Robo safety and efficiently during long experimental time.

  • PDF