• Title/Summary/Keyword: Non-woven fabric material

Search Result 44, Processing Time 0.023 seconds

Effect of Illite Non-Woven Fabric Tunnels on the Growth and Yield of Pepper (Capsicum annuum L.) in Paddy Culture (고추 논 재배시 일라이트부직포 터널을 이용한 막덮기 재배효과)

  • Jang, Kil-Su;Kim, Chan Yong;Kwon, Oh Hun;Jeon, Su Gyeong;Hwang, Ji Eun;Kwon, Tae Young
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.326-330
    • /
    • 2015
  • This study was conducted to examine the effect of tunnel covering materials on the growth and yield of red pepper in paddy fields. Materials for tunnel coverings included illite non-woven fabric and P.E film. Air and soil temperature were higher in the illite non-woven tunnel and P.E film tunnel by $7-8^{\circ}C$ and $2-3^{\circ}C$, respectively, compared to no covering. Relative humidity in those treatments was also higher than with no covering. The growth and yield were higher with illite non-woven tunnels and P.E film tunnels than with no covering. In particular, the yield was 30% and 26% higher in illite non-woven tunnels and P.E film tunnels, respectively, than with no covering.

Detoxification Properties of Guanidinylated Polyethyleneimine Treated Polypropylene Non-woven Fabric Against Chemical Warfare Agents (구아니딘화 폴리에틸렌이민이 처리된 폴리프로필렌 부직포의 군사용 화학 작용제 제독 특성)

  • Kim, Jiyun;Kwon, Woong;Kim, Changkyu;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study aims to prepare the fabric with detoxification properties against chemical warfare agent by the simple treatment. For this purpose, polypropylene non-woven fabric(PP) was treated with polyethyleneimine(PEI) and guanidinylated PEI and detoxification properties of the guanidinylated PEI treated PP were evaluated using diisopropylfluorophosphate(DFP), as a chemical warfare agent simulant, and compared with the untreated and PEI treated PP. The half-lives of DFP on guanidinylated PEI treated PP and untreated PP were 334 min and 714 min, respectively. The half-life of DFP with guanidinylated PEI treated PP was 53.22% shorter than with untreated PP. This result shows that guanidine group in guanidinylated PEI treated PP was acted as a base catalyst for hydrolysis of DFP and decreased half-life of DFP. Therefore, it is expected that guanidinylated PEI treatment can be an simple pathway to prepare the detoxification fabric material for protective clothing against chemical warfare agents.

Electrostatic Electrification Relaxation Properties of Polyester Rayon Non-woven Fabric due to Weight Variation (중량변화에 의한 폴리에스터 레이온 부직포의 정전기 대전 완화특성)

  • Lee, Sung-Ill;Park, Yong-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.977-981
    • /
    • 2011
  • Non-wovens polyester rayon samples were manufactured, and the electrification properties of electrostatics were measured for three different samples (15 g/$m^2$, 25 g/$m^2$, and 40 g/$m^2$) with the environmental settings of temperature (20~40$^{\circ}C$) and humidity (40~90%). The conclusions are as follows. Heavy sample generated more static electricity when the temperature was constant. The static electricity decreased slowly when the humidity is less than 70%, while it sharply decreased over 70% humidity condition. For non-woven polyester rayon, static charge decreased as temperature and humidity increased. As the weight increased, less time were taken for the electrification voltage to drop to the half.

Analysis of Heavy Metal Concentration on Working Clothes for Waste Incinerating Workers (생활폐기물 소각장 작업복의 중금속 분석)

  • Park, Soon-Ja
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2007
  • The purpose of this study was to determine the characteristics of an experimental protective clothing material with regard to comfort and isolation from the hazardous heavy metals produced in municipal waste incineration. An analysis was conducted on the total concentrations of heavy metals in some parts such as surface, middle layer, and interior for the treated fabric, and the untreated one, and working clothes. We conclude that the processed fabric with charcoal for working clothes showed the least exposure to heavy metals of the three. Working clothes worn by workers during waste incineration were much more contaminated than the untreated and treated materials. The material of working clothes could be chosen according to the function with regard to its original chemical characteristics, which are the proper results of the dyeing process. The processed fabric material has high degrees of moisture regain, thermal insulation, water vapor penetration, and antibacterial function; consequently, it is much more comfortable to wear. The fabric material proposed in this research contributed much more to blocking heavy metal concentrations (such as Cd, Pb, Cu, Cr, Zn, Mn) than did the fabric of working clothes at present. Consequently, we strongly suggest that the material of working clothes be upgraded by adopting the above-mentioned charcoal-processed fabric. Materials of working clothes must be improved to increase comfort and prevent harmful gas, flying dust, and heavy metals from permeating the fabrics.

  • PDF

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.

Evaluation on the Basic Properties of Polyurethane Composite Sheet Reinforced with Non-Woven Fabric (면섬유가 보강된 폴리우레탄계 복합시트의 기초 물성 평가)

  • Kim, Ji-Hyun;Do, Seung-Bae;Park, Jeong-Won;Nam, Gee-Yoong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.238-239
    • /
    • 2017
  • Waterproofing is a very important process in terms of durability of buildings. The materials used for waterproofing work to protect the concrete structure from external deterioration factors. In particular, the waterproofing materials applied to the exterior of the concrete structure have various problems due to changes in the external environment and variables in the construction process. The waterproof layer is repeatedly dried and shrunk according to changes in the external moisture environment, and the surface may be deteriorated due to exposure to long-term sunlight. In the case of the roof waterproofing in the structure, the waterproof layer which does not have a sufficient curing period shows much swelling and floating phenomenon. These defects, such as swelling and lifting, account for most of the defects that occur in the waterproof layer of the concrete slabs. Generally, it is difficult to expect the same level of performance as the initial state even if the waterproofing work is repaired when a defect occurs. Therefore, it is possible to reduce the defects of the waterproof layer such as swelling and lifting by forming a waterproof layer which can be integrated with the concrete surface by using a polyurethane type waterproofing material having a relatively low defective ratio compared to other waterproofing materials. So in this study, the basic properties of polyurethane waterproof sheet reinforced with non-woven fabric are investigated in order to understand field applicability.

  • PDF

A Study on Tensile Properties and Non-linear Behavior Analysis of Membrane for Stratospheric Airship Envelop (성층권 비행선용 막 재료의 인장 물성 측정 및 비선형 거동에 관한 연구)

  • Lee, Han-Geol;Roh, Jin-Ho;Lee, In;Kang, Wang-Gu;Yeom, Chan-Hong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • The material properties of membrane for stratospheric airship is experimentally investigated. Mechanical tensile properties of the membrane material at room, high and low temperature are measured using instron with thermal chamber. Experimentaly, material non-linearity is observed at room and high temperature. In order to simulate material non-linearity caused by the uniaxial extension curve of a woven fabric, the nonlinear hyperelastic problem is considered with finite clement program of ABAQS. Numerical results are compared with experimental results.

  • PDF

Development and Evaluation of Functional Lab Gowns in Point of Thermoregulation and Thermal Comfort (기능성 실험 가운의 개발 및 평가 -체온조절 및 온열 쾌적성을 중심으로-)

  • 최정화;이주영;김소영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.2
    • /
    • pp.292-302
    • /
    • 2004
  • The purpose of this study was to evaluate thermal properties of lab gowns developed from the point of safety and work efficiency. We evaluated thermal and subjective responses of subjects wearing functional new lab gowns (Type B, C, D) and a popular lab gown on the market (Type A). Type B was a new lab gown made of woven fabric with functional cuffs. Type C was a new apron made of woven fabric with arm protectors. Type D was a new lab gown made of non-woven material with functional cuffs and openings around the armpits. Temperature in the climatic chamber was set at 19$^{\circ}$C as an indoor temperature in winter and at 24$^{\circ}$C in summer. There were no significant differences in rectal temperature and heart rate among four types of gowns and between two air temperatures for 120 min. Mean skin temperature was much higher in the type A and B than in He type C and D (p .05). In the 19$^{\circ}$C air, clothing microclimate temperature on the back was the highest in the type B and was the lowest in the type C (p .05). Clothing microclimate humidity was not significant differences among gowns. In subjective .esponses, subjects perceived that Type B was the warmest gown in the 19$^{\circ}$C and the hottest and more humid in the 24$^{\circ}$C than other gowns. Inversely, type C was the coolest gown among four gowns. Both in the 19$^{\circ}$C and in the 24$^{\circ}$C, the Type D had gained most responses of being comfortable. In conclusion, the temperature difference of 5$^{\circ}$C was more of an influencing factor than the difference from four types of lab gowns. Secondly, we recommend the manufacturers to make lab gowns with functional cuffs for safety purposes. Thirdly, the spread of the type of apron with arm protector will contribute to increase of the frequency of wearing in summer. Fourthly, it is necessary to study continuously about lab gowns with non-woven materials for researchers exposed to toxic chemical and biological materials.

Evaluation of Antibacterial Property and Freshness Maintenance of Functional Hybrid Corrugated Board Used for Agricultural Products (농산물용 복합 골판지의 항균성 및 선도유지기능 평가)

  • Lee, Ji-Young;Kim, Chul-Hwan;Choi, Jae-Sung;Oh, Seok-Ju;Kim, Byeong-Ho;Lim, Gi-Baek;Kim, Sun-Young;Kim, Jun-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.45-51
    • /
    • 2013
  • We developed a new antibacterial material, a non-woven fabric, a sulfur solution, and a new adhesive system to manufacture a new type of functional hybrid corrugated board in previous studies. Based on experimental data, the prototypes of functional hybrid corrugated boards were manufactured and their physical properties and functionalities, including antibacterial property and the freshness maintenance of sweet persimmon, were measured in this study. The functional hybrid corrugated board could be manufactured in the actual process with linerboards, non-woven fabrics, and other materials without any troubles, and was strong enough to be used as a packaging box for agricultural products. The antibacterial property of the hybrid corrugated board showed a value high enough to eliminate bacteria, which could deteriorate the sweet persimmons. Based on appearance observations, weight loss and firmness measurements, the freshness of sweet persimmons in the functional hybrid corrugated board was maintained better than it was in the conventional corrugated board.

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.