• Title/Summary/Keyword: Non-uniform

Search Result 2,164, Processing Time 0.039 seconds

A Study on Thermal Diffusivity Measurement by Improvement of Laser Flash Uniformity Using an Optical Fiber (광섬유를 이용한 레이저섬광의 균일분포 증진효과에 따른 열확산계수 측정에 관한 고찰)

  • Lee, Won-Sik;Bae, Shin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1073-1082
    • /
    • 1998
  • When thermal diffusivity is measured by laser flash method, the thermal diffusivity call be calculated front the assumption of the uniformly heated whole surface of the specimen. It has been known that the approximate 5% error is made by the non-uniform energy distribution on the specimen surface of laser pulse heat source. In this study, to obtain the highly-uniformed laser beam, which has both the low non-uniform heating error from non-uniform laser beam and the energy loss, research was carried out on no transmitting loss by optical fiber and high repetitions. In addition, heating error and thermal diffusivity were measured as the measuring positions were varied and compared with the results using the uniform and the non-uniform laser beams. In addition, dole to using the uniformalized laser beam, the whole surface of the specimen was heated uniformly and as a result, it was the thought that this was very effective to reduce the variations of the errors of the thermal diffusivity as the measuring positions were varied. It can be obtained that when the thermal diffusivity of POCO-AXM-5Q1 of SRM in NBS was measured with both the uniform and the non-uniform laser beams, the dispersion error of the former was from 2 to 2.5%, which was more improved than that of the latter.

Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge

  • Chen, Xingyu;Guo, Junjie;Tang, Haojun;Li, Yongle;Wang, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • The existence of a dam has potential effects on the surrounding wind environment especially when it is located in mountainous areas. In this situation, the long-span bridge over the reservoir can easily be exposed to non-uniform incoming flows, affecting its wind-resistance performance. This paper presents a study on the aerostatic stability of such a bridge. Wind tunnel tests were first carried out to investigate the wind environment above a mountainous reservoir. The results show that the angle of attack and the wind speed along the bridge axis show obvious non-uniform characteristics, which is related to the inflow direction. When winds come from the south where the river is winding, the angle of attack varies along the span direction significantly. The finite element model for the bridge was established using ANSYS software, and effects of non-uniform wind loads on the aerostatic stability were computed. Non-uniform angle of attack and wind speed are unfavorable to the aerostatic stability of the bridge, especially the former. When the combined action of non-uniform angle of attack and wind speed is considered, the critical wind speed of aerostatic instability is further reduced. Moreover, the aerostatic stability of the bridge is closely related to the dam height.

Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.347-371
    • /
    • 2011
  • This paper focuses on post-buckling analysis of Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam element approximation. Six types of support conditions for the beams are considered. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, the relationships between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress distributions through the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Dynamic Response of Non-Uniform Beams under a Moving Mass (이동질량에 의한 불균일 단면보의 동적응답)

  • 김인우;이영신;이규섭;류봉조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.553-556
    • /
    • 2000
  • The paper deals with the dynamic response of non-uniform beams subjected to a moving mass. In the dynamic analysis, the effects of inertia force, elastic force, centrifugal force, Coriolis force and self weight due to moving mass are taken into account. Galerkin's mode summation method is applied for the discretized equations of notion. Numerical results for the dynamic response of the non-uniform beam under a moving mass having various magnitudes and velocities are investigated. Experimental results have a good agrement with predictions

  • PDF

Design of Walking Robot Based on Jansen Mechanism for Non-uniform Ground Surface (균일하지 않은 지면 보행을 위한 얀센 메커니즘 기반의 보행로봇 설계)

  • Jeong, YunWoo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.481-484
    • /
    • 2016
  • Jansen mechanism is basic principal of walking robot. Because that mechanism have many link, walking robot can walk like animals. One of the feature is that space is existed between leg of walking robot and ground surface. So, it can walk through the non-uniform ground surface that have obstacle. In this paper, I will suggest design of walking robot that can walk on non-uniform ground surface effectively based on Jansen mechanism.

  • PDF

Experimental and numerical investigation on the pressure pulsation in reactor coolant pumps under different inflow conditions

  • Song Huang;Yu Song;Junlian Yin;Rui Xu;Dezhong Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1310-1323
    • /
    • 2023
  • A reactor coolant pump (RCP) is essential for transporting coolant in the primary loop of pressurized water reactors. In the advanced passive reactor, the absence of a long pipeline between the steam generator and RCP serves as a transition section, resulting in a non-uniform flow field at the pump inlet. Therefore, the characteristics of the pump should be investigated under non-uniform flow to determine its influence on the pump. In this study, the pressure pulsation characteristics were examined in the time and frequency domains, and the sources of low-frequency and high-amplitude signals were analyzed using wavelet coherence analysis and numerical simulation. From computational fluid dynamics (CFD) results, non-uniform inflow has a great effect on the flow structures in the pump's inlet. The pressure pulsation in the pump at the rated flow increased by 78-128.7% under the non-uniform inflow condition in comparison with that observed under the uniform inflow condition. Furthermore, a low-frequency signal with a high amplitude was observed, whose energy increased significantly under non-uniform flow. The wavelet coherence and CFD analysis verified that the source of this signal was the low-frequency pulsating vortex under the steam generator.

Sensor Positioning Scheme using Density Probability Models in Non-uniform Wireless Sensor Networks (비 균일 무선 센서 네트워크 환경에서 밀집 확률 모델링을 이용한 센서 위치 인식 기법)

  • Park, Hyuk;Hwang, Dong-Kyo;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • In wireless sensor networks, a positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. The One of the most positioning scheme, called DV-HOP does not consider non-uniform sensor networks that are actual distributed environments. Therefore, the accuracy of the existing positioning scheme is low in non-uniform network environments. Moreover, because it requires many anchor nodes for high accuracy in non-uniform network environments, it is expensive to construct the network. To overcome this problem, we propose a novel sensor positioning scheme using density probability models in non-uniform wireless sensor networks. The proposed scheme consists of the density probability model using the deployment characteristics of sensor nodes and the distance refinement algorithm for high accuracy. By doing so, the proposed scheme ensures the high accuracy of sensor positioning in non-uniform networks. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme improves about 44% accuracy of sensor positioning over the existing scheme on average even in non-uniform sensor networks.

A Study on the Spot Inspection for LCD Modules (LCD모듈의 얼룩검사에 관한 연구)

  • Lee, Jae-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.422-424
    • /
    • 2006
  • This paper suggests an automatic spot-inspection algorithm for LCD modules. Usually, LCD module testing is classified by two categories. One is for uniform pattern testing and the other is Non-uniform testing. The uniform pattern testing is well defined and also fully automated in the factory. However non-uniform pattern testing is not defined well yet, so non-uniform testing is conducted by human operators. In this paper a spot-pattern, which is one of non-uniform pattern, inspection algorithms are proposed. The performance of the proposed algorithm is tested by extensive simulations using artificial slot-patterns and real ones in the LCD modules.

  • PDF

Performance Analysis for Weaker Channel User in Non-Uniform Source SSC NOMA with Novel BTS

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • Recently, to improve the performance of the strongest channel gain user in non-orthogonal multiple access (NOMA) with a non-uniform source and symmetric superposition coding (SSC), a novel bit-to-symbol (BTS) mapping have been proposed. However, only the performance of the user with the stronger channel gain was analyzed. Thus, we compare the bit-error rate (BER) of the new BTS scheme with that of uniform sources, especially for the user with weakest channel gain. First, we show that the performance of the novel BTS scheme for the user with weakest channel gain also improves, compared to that of the uniform sources. Furthermore, the signal-to-noise (SNR) gain of the new BTS scheme over the uniform sourcesis calculated. As a consequence, the novel BTS scheme would improve the performance of the user with weakest channel gain as well as that with the stronger channel gain for SSC NOMA with a non-uniform source.