Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)
-
- Journal of Intelligence and Information Systems
- /
- v.19 no.3
- /
- pp.57-71
- /
- 2013
Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.
According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.
The purpose of this study was to investigate the differences according to lifestyle in anthropometric measurement, dietary attitude, health-related behaviors and nutrient intake among the college students. The subjects were 994 nation-wide college students (male: 385, female: 609) and divided into 7 clusters (PEAO: passive economy/appearance-oriented type, NCPR: non-consumption/pursuit of relationship type, PTA: pursuit of traditional actuality type, PAT: pursuit of active health type, UO: utility-oriented type, POF: pursuit of open fashion type, PFR: pursuit of family relations type). A cross-sectional survey was conducted using a self administered questionnaire, and the data were collected via Internet or by mail. The nutrient intake data collected from food record were analyzed by the Computer Aided Nutritional Analysis Program. Data were analyzed by a SPSS 12.0 program. Average age of male and female college students were 23.7 years and 21.6 years, respectively. Most of the college students had poor eating habits. In particular, about 60% of the PEAO group has irregularity in meal time. The students in PAH and POF groups showed significantly higher consumption frequency of fruits, meat products and foods cooked with oil compared to the other groups. As for exercise, drinking and smoking, there were significant differences between PAH and the other groups. Asked for the reason for body weight control, 16.2% of NCPR group answered "for health", but 24.8% of PEAO group and 26.3% of POF group answered "for appearance". Calorie, vitamin A, vitamin
In the past, retailers secured customer loyalty by offering convenient locations, unique assortments of goods, better services than competitors, and good credit policy. All this has changed. Goods assortments among stores have become more alike as national-brand manufacturers place their goods in more and more retail stores. Service differentiation also has eroded. Many department stores have trimmed services, and many discount stores have increased theirs. Customers have become smarter shoppers. They don't pay more for identical brands, especially when service differences have diminished. In the face of increased competition from discount storess and specialty stores, department stores are waging a comeback war. Growth of intertype competition, competition between store-based and non-store-based retailing and growing investment in technology are changing the way consumers shop and retailers sell. Different types of stores-discount stores, catalog showrooms, department stores-all compete for the same consumers by carrying the same type of merchandise. The biggest winners are retailers that have helped shoppers to be economically cautious, simplified their increasingly busy and complicated lives, and provided an emotional connection. The growth of e-retailers has forced traditional brick-and-mortar retailers to respond. Basically brick-and-mortar retailers utilize their natural advantages, such as products that shoppers can actually see, touch, and test, real-life customer service, and no delivery lag time for small-sized purchases. They also provide a shopping experience as a strong differentiator. They are adopting practices as calling each shopper a "guest". The store atmosphere should match the basic motivations of the shopper. If target consumers are more likely to be in a task-oriented and functional mindset, then a simpler, more restrained in-store environment may be better. Consistent with this reasoning, some retailers of experiential products are creating in-store entertainment to attract customers who want fun and excitement. The retail experience must deliver value to turn a one-time visitor into a loyal customer. Retailers need a tool that measures the full range of components that define experience-based value. This study uses an experiential value scale(EVS) developed by Mathwick, Malhotra and Rigdon(2001) which reflects the benefits derived from perceptions of playfulness, aesthetics, customer "return on investment" and service excellence. EVS is useful to predict differences in shopping preferences and patronage behavior of customers. EVS consists of items measuring efficiency, economic value, visual appeal, entertainment value, service excellence, escapism, and intrinsic enjoyment, which are subscales of experiencial value. Efficiency, economic value, service excellence are linked to the utilitarian shopping value. And visual appeal, entertainment value, escapism and intrinsic enjoyment are linked to hedonic shopping value. It has been found that consumers value hedonic experiences activated from escapism and attractiveness of shopping environment as much as the product quality, price, and the convenient location. As a result, many department stores, discount stores, and other retailers are introducing differential marketing strategy based on emotional/hedonic values. Many researches suggest that consumers go shopping not only for buying products but also for various shopping experiences. In other words, they seek the practical, rational value as well as social, recreational values in the shopping process(Babin et al, 1994; Bloch et al, 1994). Retailers may enhance buyer's loyalty to store by providing excellent emotional/hedonic value such as the excitement from shopping, not just the practical value of buying good products efficiently. We investigate the effect of perceived shopping values on the emotional experience and store loyalty based on the EVS(Experiential Value Scales) developed by Holbrook(1994), Mathwick, Malhotra and Rigdon(2001). This study assumes that the relative effect of shopping value dimensions on the responses of shoppers will differ according to types of stores and analyzes the moderating effect of store type(department store VS. discount store) on the causal relationship between shopping value dimensions and store loyalty. Emprical results show that utilitarian values of shopping experience and hedonic value of shipping experience give the positive effect on the emotional response of consumers and store loyalty. We also found the moderating effect of store types. The effect of utilitarian shopping values on the attitude toward discount store is higher than the effect of utilitarian shopping values on the attitude toword department store. And the effect of hedonic shopping value on the emotional response to discount store is higher than on the emotional response to department store. The empirical results reflect on the recent trend that discount stores try to fulfill the hedonic needs of consumers as well as utilitarian needs(i.e, low price) that discount stores traditionally have focused on
The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The purpose of this paper was to schedule optimum cutting strategy which could maximize the total yield under certain restrictions on periodic timber removals and harvest areas from an industrial forest, based on a linear programming technique. Sensitivity of the regulation model to variations in restrictions has also been analyzed to get information on the changes of total yield in the planning period. The regulation procedure has been made on the experimental forest of the Agricultural College of Seoul National University. The forest is composed of 219 cutting units, and characterized by younger age group which is very common in Korea. The planning period is devided into 10 cutting periods of five years each, and cutting is permissible only on the stands of age groups 5-9. It is also assumed in the study that the subsequent forests are established immediately after cutting existing forests, non-stocked forest lands are planted in first cutting period, and established forests are fully stocked until next harvest. All feasible cutting regimes have been defined to each unit depending on their age groups. Total yield (Vi, k) of each regime expected in the planning period has been projected using stand yield tables and forest inventory data, and the regime which gives highest Vi, k has been selected as a optimum cutting regime. After calculating periodic yields and cutting areas, and total yield from the optimum regimes selected without any restrictions, the upper and lower limits of periodic yields(Vj-max, Vj-min) and those of periodic cutting areas (Aj-max, Aj-min) have been decided. The optimum regimes under such restrictions have been selected by linear programming. The results of the study may be summarized as follows:- 1. The fluctuations of periodic harvest yields and areas under cutting regimes selected without restrictions were very great, because of irregular composition of age classes and growing stocks of existing stands. About 68.8 percent of total yield is expected in period 10, while none of yield in periods 6 and 7. 2. After inspection of the above solution, restricted optimum cutting regimes were obtained under the restrictions of Amin=150 ha, Amax=400ha,