• 제목/요약/키워드: Non-structural element

검색결과 799건 처리시간 0.206초

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

원통형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.338-342
    • /
    • 2017
  • 본 논문에서는 원통형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 구조안전성 평가는 유한요소해석을 통해 수행하였다. 구조안전성 평가를 위한 최적의 유한요소를 확인하기 위해 원통형 복합재 격자구조체 유한요소모델은 빔, 쉘 그리고 솔리드 요소를 사용해 생성하였다. 쉘과 솔리드 모델의 유한요소 해석결과는 서로 유사하게 발생되었다. 그러나 빔 모델의 경우, 쉘과 솔리드 모델의 결과와 큰 차이가 발생하였다. 이것은 빔 요소가 원통형 복합재 격자구조체 섬유 비교차부의 기계적 물성저하를 고려하지 못하기 때문이다. 원통형 복합재 격자구조체의 구조안전성 평가를 위한 유한요소해석은 쉘 또는 솔리드 요소를 사용해야 하는 것을 확인하였다.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Effect of lateral structural systems of adjacent buildings on pounding force

  • Kheyroddin, Ali;Kioumarsi, Mahdi;Kioumarsi, Benyamin;Faraei, Aria
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.229-239
    • /
    • 2018
  • Under strong ground motion, pounding can be caused because of the different dynamic properties between two adjacent buildings. Using different structural systems in two adjacent structures makes a difference in the lateral stiffness and thus changes the pounding force between them. In this paper, the effect of the structural system of adjacent buildings on the amount of force applied by pounding effects has been investigated. Moment resisting frame systems (MRFs), lateral X-bracing system (LBS), shear wall system (SWS) and dual system (DS) have been investigated. Four different cases has been modelled using finite element (FE) method. The number of stories of the two adjacent buildings is different in each case: case 1 with 6 and 4 stories, case 2 with 9 and 6 stories, case 3 with 15 and 6 stories and case 4 with 10 and 10 stories. The structures have been modelled three-dimensionally. Non-linear time history analysis has been done on the structures using the finite element software SAP2000. In order to model pounding effects, the non-linear gap elements have been used.

Exterior Acoustic Holography Reconstruction of a Tuning Fork Using Inverse Non-singular BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권1E호
    • /
    • pp.11-18
    • /
    • 2003
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the initial exterior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is, used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 ㎐ resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현 (Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM)

  • 장순석;이제형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.306-311
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near Held pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used far the initial exterior pressures which are initially calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

  • PDF

S. I. 기법을 이용한 유한요소모델의 신뢰도 제고에 관한 연구 (A Study on Improving the Accuracy of Finite Element Modeling Using System Identification Technique)

  • 양경택
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 경계부 및 연결부를 지닌 기계 구조물의 유한요소모델 수립시 상대적으로 불확실성이 많은 경계부 및 연결부를 정확히 모델링하여 전체 구조계에 대한 해석적 모델의 신뢰도를 제고하는데 그 목적을 두고, 현장에서 간단히 측정할 수 있는 측정 데이터와 축약된 형태의 유한요소모델을 이용하는 S.I.기법을 제시하였다. 제시된 방법은 연결부를 제외한 연속체를 유한요소법으로 모델링하고 연결부의 동적 계수를 변수 상태로 하여 시간 영역에서의 비선형 상태 방정식을 구성하였으며 계수 규명 문제를 비선형 상태 방정식의 상태 추정 문제로 변환하여 해결하였다. 두 가지 예제에 대한 수치 해석을 통하여 제시된 기법의 타당성을 검증하였다.

  • PDF

Computer Analysis of Non-vaulted Nef Unique System

  • Hong, Seong-Woo
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2000
  • Ever since Viollet-le-Due began to examine Gothic structural elements using his method of geometrical analysis in the nineteenth century, art and architectural historians and a few engineers have periodically attempted to ascertain the structural advantages of the various characteristic features of Gothic architecture. In none of these studies, however, has the way forces work within the lightweight and spacious masonry Gothic buildings been precisely interpreted. The approach taken by art and architectural historians has therefore tended to be primarily descriptive and to be based on intuitive assumptions. This study intend to analyze the Gothic non-vaulted nef unique(aisleless) structures of Lower Languedoc which has never been scientifically tested, and to provide as comprehensive an explanation as possible of the way in which these non-vaulted buildings work. In order to achieve this goal, this paper Is to examine, by means of finite element analysis. the links between the width of non-vaulted aisleless structures, the configuration of the arches, diaphragm arch, and the buttress. Finite element analysis with a computer provides a more accurate analysis than the methods of analysis that have been heretofore applied to Gothic structures, as well as permits us to visualize the global stress behavior of the structure. Combined with traditional methods of studying historical buildings, therefore, finite element analysis inevitably give us a broader understanding of the processes involved in the design and construction of medieval buildings.

  • PDF

정현상으로 Taper진 부재의 고유진동수 (Natural Frequencies of Sinusoidally Nonsymmetrically Tapered Members)

  • 강명진;안성기;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.263-270
    • /
    • 2000
  • It is generally known that the stress and displacement of a member or a system under dynamic load with frequency ω are magnified by the factor 1/[1-(ω/ω/sub 0/)sup/ 2/]. When the member assumes non-prismatic shape, the natural frequency, ω/sub 0/ is hard or impossible to determine if the conventional method are adopted. In these cases, the numerical methods are provide powerful tools for the solution of frequency problems. In this paper, finite element method is applied to determine the natural frequencies of the non-symmetrically tapered members. The shape of the member is assumed to change sinusoidally along its axis. The results obtained by finite element method are expressed by some simple algebraic equations. The estimated frequencies calculated by the proposed equations coincide well with those by the finite element method.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.