• Title/Summary/Keyword: Non-stationary Frequency Analysis

Search Result 107, Processing Time 0.028 seconds

Analysis of Electromagnetic Scattering by a Rotor with Flat Blades (날개가 달린 회전자에 의한 전자파 산란 해석)

  • 선영식;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.1-7
    • /
    • 1995
  • The problem of amplitude-and frequency-modulated waveforms is analyzed when a linearly polarized electromagnetic wave is scattered by a slowly rotating rotor with metal plates. ECM in conjunction with a quasi-stationary method is used to analyze the modulated waveforms. The modulated waveforms depend on the orientation and dimension of the object. its rotation speed, and very strongly on the incident and scattering directions. The modulate waveforms of a rotating non-skewed metal plate and a rotor with two blades are functions of twice the rotating frequency of those. Similar results are discussed for a rotating skewed metal plate, but the modulated waveforms is a function of the rotating frequency. Numerical results based on our ECM are presented and compared with those of Sikta's and PO solution.

  • PDF

System Identification of In-situ Vehicle Output Torque Measurement System (차량 출력 토크 측정 시스템의 시스템 식별)

  • Kim, Gi-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

Prediction of the Successful Defibrillation using Hilbert-Huang Transform (Hilbert-Huang 변환을 이용한 제세동 성공 예측)

  • Jang, Yong-Gu;Jang, Seung-Jin;Hwang, Sung-Oh;Yoon, Young-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.45-54
    • /
    • 2007
  • Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.

A Study on Noise Source Identification for Loading Mechanism and Rattle noise about A/V System (차량용 A/V 시스템의 구동부 소음원과 래틀 소음원에 관한 연구)

  • 홍종호;강연준;이상호;이완우;이기석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.189-195
    • /
    • 2003
  • This paper represents an identification procedure for leading mechanism of a car A/V system which is composed of a DC motor and a set of plastic gears. In addition, we studied dominant noise source of rattle noise generated by external forced vibration as a car drives. we made a dynamometer to produce stationary operation on loading mechanism of A/V system because noise generated by actual loading mechanism is non-stationary signal. operating the dynamometer setup at various motor speeds, sound pressure spectra are measured and the results are analyzed. its dominant noise source is also identified by using a sound Intensity technique. we made use of multi-dimensional spectral analysis to rind a dominant rattle noise. this method is so useful to eliminate coherence between vibration sources and helps us obtain coherent output spectrum of individual vibration source which make a rattle noise.

  • PDF

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

Applications of the wavelet transform in the generation and analysis of spectrum-compatible records

  • Suarez, Luis E.;Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.173-197
    • /
    • 2007
  • A wavelet-based procedure to generate artificial accelerograms compatible with a prescribed seismic design spectrum is described. A procedure to perform a baseline correction of the compatible accelerograms is also described. To examine how the frequency content of the modified records evolves with time, they are analyzed in the time and frequency using the wavelet transform. The changes in the strong motion duration and input energy spectrum are also investigated. An alternative way to match the design spectrum, termed the "two-band matching procedure", is proposed with the objective of preserving the non-stationary characteristics of the original record in the modified accelerogram.

Analysis of the Leakage Impulse Current in Faulty Insulators for Detection of Incipient Failures (절연물의 초기사고 감지를 위한 누설 임펄스 전류의 해석)

  • Kim, Chang-Jong;Lee, Heung-Jae;Sin, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.390-398
    • /
    • 2000
  • Leakage impulse current of the contaminated insulators by using experiment data were studied. The impulse current in phase-time relationship was analyzed on line post insulators. Also, frequency components and crest factor of the leakage current were investigated to provide a scheme for an early detection of insulator incipient failure. The study shows that the phase-time characteristic is non-stationary and random and, non-harmonic component and crest factor can be promising parameters for detecting insulator leakage currents.

  • PDF

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.