• 제목/요약/키워드: Non-stationarity

검색결과 78건 처리시간 0.034초

멀티에이전트 강화학습 기술 동향: 분산형 훈련-분산형 실행 프레임워크를 중심으로 (Survey on Recent Advances in Multiagent Reinforcement Learning Focusing on Decentralized Training with Decentralized Execution Framework)

  • 신영환;서승우;유병현;김현우;송화전;이성원
    • 전자통신동향분석
    • /
    • 제38권4호
    • /
    • pp.95-103
    • /
    • 2023
  • The importance of the decentralized training with decentralized execution (DTDE) framework is well-known in the study of multiagent reinforcement learning. In many real-world environments, agents cannot share information. Hence, they must be trained in a decentralized manner. However, the DTDE framework has been less studied than the centralized training with decentralized execution framework. One of the main reasons is that many problems arise when training agents in a decentralized manner. For example, DTDE algorithms are often computationally demanding or can encounter problems with non-stationarity. Another reason is the lack of simulation environments that can properly handle the DTDE framework. We discuss current research trends in the DTDE framework.

CENTRAL LIMIT THEOREMS FOR CONDITIONALLY STRONG MIXING AND CONDITIONALLY STRICTLY STATIONARY SEQUENCES OF RANDOM VARIABLES

  • De-Mei Yuan;Xiao-Lin Zeng
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.713-742
    • /
    • 2024
  • From the ordinary notion of upper-tail quantitle function, a new concept called conditionally upper-tail quantitle function given a σ-algebra is proposed. Some basic properties of this terminology and further properties of conditionally strictly stationary sequences are derived. By means of these properties, several conditional central limit theorems for a sequence of conditionally strong mixing and conditionally strictly stationary random variables are established, some of which are the conditional versions corresponding to earlier results under non-conditional case.

비정상성 기반 미래 침수특성 분석을 위한 중소하천 부정류 해석 (Unsteady Flow Simulation in Small-Medium Rivers for Analyzing Future Inundation Characteristics based on Non-Stationarity)

  • 류정훈;강문성;박지훈;전상민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.152-152
    • /
    • 2016
  • 최근 기후변화의 영향으로 장마, 태풍 등 극한사상의 발생빈도와 강도가 비정상적인 증가 추세를 나타내고 있으며, 여름철 국지성 호우로 인한 농경지 및 도심 저지대 지역의 침수 피해가 발생하고 있다. 침수 피해에 대한 대책 마련을 위해서는 수공구조물 설계 기준을 초과하는 호우에 대한 홍수 영향을 분석할 필요가 있으며, 기후변화에 따른 강우자료의 변화 특성을 파악하기 위해서는 비정상성 (Non-Stationary) 가정이 수반되어야 한다. 따라서 본 연구에서는 비정상성 빈도해석을 통해 중소하천을 대상으로 부정류 해석을 실시하고 미래 침수특성을 분석하고자 한다. 연구대상지는 상습 침수지역이 위치한 중소하천을 선정하였고, 각 유역에 가장 인접한 기상관측소로부터 강수량 자료를 수집하였다. 강수량 모의 자료는 국립기상과학원에서 제공하는 해상도 12.5 km의 지역 기후변화 시나리오를 이용하여 구축하였다. 구축한 강수량 자료는 정상성 및 비정상성 빈도해석을 각각 수행하였으며 비정상성 빈도해석 방법으로는 누적평균 방법 및 이동평균 방법을 적용하였다. 유역 유출량은 실무에서 설계홍수량 산정에 널리 이용되고 있는 HEC-HMS 모형으로 산정하였다. 유출량과 하천기본계획의 하천단면 측량자료를 1차원 부정류 해석 모형인 HEC-RAS 모형에 입력하고 부정류 해석을 실시하여 하천 홍수위를 모의하였다. 본 연구의 결과는 상습 침수 지역의 침수 피해에 대한 관리 대책을 수립하는데 기초자료로 사용할 수 있을 것을 사료된다.

  • PDF

A Square Root Normalized LMS Algorithm for Adaptive Identification with Non-Stationary Inputs

  • Alouane Monia Turki-Hadj
    • Journal of Communications and Networks
    • /
    • 제9권1호
    • /
    • pp.18-27
    • /
    • 2007
  • The conventional normalized least mean square (NLMS) algorithm is the most widely used for adaptive identification within a non-stationary input context. The convergence of the NLMS algorithm is independent of environmental changes. However, its steady state performance is impaired during input sequences with low dynamics. In this paper, we propose a new NLMS algorithm which is, in the steady state, insensitive to the time variations of the input dynamics. The square soot (SR)-NLMS algorithm is based on a normalization of the LMS adaptive filter input by the Euclidean norm of the tap-input. The tap-input power of the SR-NLMS adaptive filter is then equal to one even during sequences with low dynamics. Therefore, the amplification of the observation noise power by the tap-input power is cancelled in the misadjustment time evolution. The harmful effect of the low dynamics input sequences, on the steady state performance of the LMS adaptive filter are then reduced. In addition, the square root normalized input is more stationary than the base input. Therefore, the robustness of LMS adaptive filter with respect to the input non stationarity is enhanced. A performance analysis of the first- and the second-order statistic behavior of the proposed SR-NLMS adaptive filter is carried out. In particular, an analytical expression of the step size ensuring stability and mean convergence is derived. In addition, the results of an experimental study demonstrating the good performance of the SR-NLMS algorithm are given. A comparison of these results with those obtained from a standard NLMS algorithm, is performed. It is shown that, within a non-stationary input context, the SR-NLMS algorithm exhibits better performance than the NLMS algorithm.

지가 추정을 위한 공간내삽법의 정확성 평가 (Evaluating the Accuracy of Spatial Interpolators for Estimating Land Price)

  • 전병운
    • 한국지리정보학회지
    • /
    • 제20권3호
    • /
    • pp.125-140
    • /
    • 2017
  • 지금까지 지가나 주택가격을 추정하는데 회귀모형 기반 공간내삽법과 크리깅(Krging) 기반 공간내삽법이 많이 사용되었지만, 이들 공간내삽법의 성능을 서로 비교한 연구는 거의 없는 실정이다. 따라서 본 연구는 대구시 달서구를 사례로 지가를 추정하는데 회귀모형 기반 공간내삽법과 크리깅 기반 공간내삽법을 적용해 보고 그 정확성을 평가하였다. 회귀모형 기반 공간내삽을 위해 최소자승모형(OLS), 공간지체모형(SLM), 공간오차모형(SEM), 지리가중회귀모형(GWR)을 사용하였고, 크리깅 기반 공간내삽을 위해 단순 크리깅(SK), 정규 크리깅(OK), 일반 크리깅(UK), 공동 크리깅(CK)을 이용하였다. 먼저, 전역적 정확성 지수인 평균 제곱근 오차(RMSE), 수정된 평균 제곱근 오차(adjusted RMSE), 분산지수(COD)를 이용하여 그 정확성을 통계적으로 평가하였다. 다음으로, 3차원 잔차도와 산점도를 이용하여 그 정확성을 시각적으로 서로 비교하였다. 통계적 및 시각적 분석결과에 의하면, 공간적 의존성을 반영할 수 있는 공간회귀모형(SAR)과 크리깅 기법들 보다 공간적 이질성을 고려할 수 있는 GWR이 사례지역에서 지가를 추정하는데 상대적으로 정확한 공간내삽방법인 것으로 나타났다. 본 연구의 결과는 지가를 통해 도시의 공간구조를 분석하는 이차적 연구에 기여할 것이다.

토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로 (Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed)

  • 박세린;최관모;이상우
    • 생태와환경
    • /
    • 제52권2호
    • /
    • pp.94-104
    • /
    • 2019
  • 본 연구는 금강 권역을 대상으로 일반최소자승법(OLS)과 공간지리 가중회귀모형(GWR)을 적용하여 유역 내 토지이용과 지형적 특성이 BOD, DO, TN, TP을 포함한 수질에 미치는 영향을 알아보고자 하였다. 일반적으로 OLS는 변수 간의 관계가 균일하다는 가정에 기초하고 있으며, 지역적인 변화를 고려하지 않는다는 한계가 있다. 따라서 본 연구에서는 변수 간의 관계가 지역적으로 다르게 나타나는 것을 검증하기 위해 GWR을 이용하여 분석하였다. 종속변수인 총 4개의 수질 측정 항목(BOD, DO, TN, TP)과 독립변수인 토지이용 비율(도시, 농업 및 산림지역) 및 지형(고도, 평균 경사)에 대하여 OLS와 GWR 모형을 각각 추정하고, 비교하였다. GWR 모형의 $R^2$와 회귀계수 값의 기초 통계량을 분석한 결과, 공간적으로 큰 변동성이 있는 것으로 나타났다. 즉, 토지이용과 지형이 수질에 미치는 영향이 지역에 따라 균일하지 않은(non-stationarity) 것을 보여준다. 또한 OLS와 GWR 모형의 $R^2$, AICc, Moran's I 지수를 비교하였을 때, 대부분 GWR 모형이 OLS 모형에 비하여 우수한 것으로 나타났다. 본 연구 결과는 향후 수질 및 유역 관리를 위한 토지이용 계획 수립 등의 정책적 근거로 활용될 수 있다.

스펙트럼 변이를 이용한 Soft Decision 기반의 음성향상 기법 (Robust Speech Enhancement Based on Soft Decision Employing Spectral Deviation)

  • 최재훈;장준혁;김남수
    • 대한전자공학회논문지SP
    • /
    • 제47권5호
    • /
    • pp.222-228
    • /
    • 2010
  • 본 논문에서는 비정상적인 배경 잡음 환경에서 음성향상을 위한 신호의 스펙트럼 변이 (Spectral Deviation)을 적용한 Soft Decision 기반의 잡음전력 수정 기법을 제안한다. 기존의 Soft Decision 기반의 잡음전력 추정에 있어서 잡음신호의 정상성(Stationarity)을 가정한 스무딩 파라미터를 사용하여 잡음전력을 추정하고 갱신하였지만, 잡음신호의 주파수적인 특성이 상대적으로 빠르게 변하는 비정상적인 환경에서는 강인하지 못한 단점을 가지게 된다. 본 논문에서는 신호의 스펙트럼 변이를 추정하여 정상적인 잡음 환경과 비정상적인 잡음 환경에 따라 적응적으로 잡음전력을 추정하고 갱신하여 잡음신호에 의해 오염된 음성신호를 향상시킨다. 제안된 알고리즘은 다양한 배경 잡음 환경에서 객관적인 음질측정 방법인 ITU-T P.862 perceptual evaluation of speech quality (PESQ)에 의해서 평가되었으며, 기존의 Soft Decision 기반의 음성 향상 기법과 비교하여 보다 향상된 성능을 보여주었다.

지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석 (Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature)

  • 이옥정;심인경;김상단
    • 한국습지학회지
    • /
    • 제20권4호
    • /
    • pp.338-344
    • /
    • 2018
  • 본 연구에서는 기후변화에 따른 극한 강우의 비정상성을 반영하기 위하여 GEV 분포의 3개 매개변수 중 위치매개변수를 공변량으로 적용하여, 지표면 기온(Surface air temperature, SAT) 및 이슬점 온도(Dew point temperature, DPT)을 고려한 비정상성 빈도해석이 실시된다. 부산 지점이 연구대상지점으로 선정되었으며, 5월부터 10월까지의 월 최대 일강수량을 이용하여 분석을 수행하였다. GEV 분포의 위치 매개변수를 위한 가장 적절한 공변량(기온과 이슬점 온도) 함수를 선택하기 위하여 다양한 모델을 구성하였으며, 구성된 모델 중 AIC(Akaike Information Criterion)가 가장 작은 모델을 최적 모델로 선정하였다. 분석 결과, exp(DPT)가 공변량인 비정상성 GEV 분포가 가장 적합한 것으로 나타났다. 선택된 모델을 이용하여 기후변화 시나리오에 따른 확률강우량의 영향을 분석하였으며, 부산지점의 경우 미래 이슬점 온도가 증가함에 따라 확률강우량이 증가할 가능성이 매우 높음을 살펴볼 수 있었다.

강우 자료 형태에 따른 분포형 유출 모형의 적용성 평가 (The Assessment of Application of the Distributed Runoff Model in accordance with Rainfall Data Form)

  • 최용준;김주철
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.252-260
    • /
    • 2010
  • The point rainfall measurements need to be converted to the areal rainfall by means of mean areal precipitation (MAP) estimation methods. And it is not appropriate to evaluate the areal rainfall with constant drift because of the geomorphological influences to rainfall field. Non-stationarity should be applied to the estimation of the areal rainfall, therefore, to consider these effects. Kriging methods with special functional would be a suitable tool in this case. Generalized covariance Kriging method is the most developed one among different Kriging methods. From this point of view this study performs the analysis of its applicability to distributed runoff model. For these purpose, distributed rainfall was created by Thiessen and Kriging method. And distributed rainfall of each method was applied into HyGIS-GRM. The result of applying, Runoff was different in the rainfall data form. Therefore, To apply Kriging method with physical meaning is that it is the useful method as distributed rainfall-runoff model.

Residual spatial autocorrelation in macroecological and biogeographical modeling: a review

  • Gaspard, Guetchine;Kim, Daehyun;Chun, Yongwan
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.191-201
    • /
    • 2019
  • Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.