The importance of the decentralized training with decentralized execution (DTDE) framework is well-known in the study of multiagent reinforcement learning. In many real-world environments, agents cannot share information. Hence, they must be trained in a decentralized manner. However, the DTDE framework has been less studied than the centralized training with decentralized execution framework. One of the main reasons is that many problems arise when training agents in a decentralized manner. For example, DTDE algorithms are often computationally demanding or can encounter problems with non-stationarity. Another reason is the lack of simulation environments that can properly handle the DTDE framework. We discuss current research trends in the DTDE framework.
From the ordinary notion of upper-tail quantitle function, a new concept called conditionally upper-tail quantitle function given a σ-algebra is proposed. Some basic properties of this terminology and further properties of conditionally strictly stationary sequences are derived. By means of these properties, several conditional central limit theorems for a sequence of conditionally strong mixing and conditionally strictly stationary random variables are established, some of which are the conditional versions corresponding to earlier results under non-conditional case.
최근 기후변화의 영향으로 장마, 태풍 등 극한사상의 발생빈도와 강도가 비정상적인 증가 추세를 나타내고 있으며, 여름철 국지성 호우로 인한 농경지 및 도심 저지대 지역의 침수 피해가 발생하고 있다. 침수 피해에 대한 대책 마련을 위해서는 수공구조물 설계 기준을 초과하는 호우에 대한 홍수 영향을 분석할 필요가 있으며, 기후변화에 따른 강우자료의 변화 특성을 파악하기 위해서는 비정상성 (Non-Stationary) 가정이 수반되어야 한다. 따라서 본 연구에서는 비정상성 빈도해석을 통해 중소하천을 대상으로 부정류 해석을 실시하고 미래 침수특성을 분석하고자 한다. 연구대상지는 상습 침수지역이 위치한 중소하천을 선정하였고, 각 유역에 가장 인접한 기상관측소로부터 강수량 자료를 수집하였다. 강수량 모의 자료는 국립기상과학원에서 제공하는 해상도 12.5 km의 지역 기후변화 시나리오를 이용하여 구축하였다. 구축한 강수량 자료는 정상성 및 비정상성 빈도해석을 각각 수행하였으며 비정상성 빈도해석 방법으로는 누적평균 방법 및 이동평균 방법을 적용하였다. 유역 유출량은 실무에서 설계홍수량 산정에 널리 이용되고 있는 HEC-HMS 모형으로 산정하였다. 유출량과 하천기본계획의 하천단면 측량자료를 1차원 부정류 해석 모형인 HEC-RAS 모형에 입력하고 부정류 해석을 실시하여 하천 홍수위를 모의하였다. 본 연구의 결과는 상습 침수 지역의 침수 피해에 대한 관리 대책을 수립하는데 기초자료로 사용할 수 있을 것을 사료된다.
The conventional normalized least mean square (NLMS) algorithm is the most widely used for adaptive identification within a non-stationary input context. The convergence of the NLMS algorithm is independent of environmental changes. However, its steady state performance is impaired during input sequences with low dynamics. In this paper, we propose a new NLMS algorithm which is, in the steady state, insensitive to the time variations of the input dynamics. The square soot (SR)-NLMS algorithm is based on a normalization of the LMS adaptive filter input by the Euclidean norm of the tap-input. The tap-input power of the SR-NLMS adaptive filter is then equal to one even during sequences with low dynamics. Therefore, the amplification of the observation noise power by the tap-input power is cancelled in the misadjustment time evolution. The harmful effect of the low dynamics input sequences, on the steady state performance of the LMS adaptive filter are then reduced. In addition, the square root normalized input is more stationary than the base input. Therefore, the robustness of LMS adaptive filter with respect to the input non stationarity is enhanced. A performance analysis of the first- and the second-order statistic behavior of the proposed SR-NLMS adaptive filter is carried out. In particular, an analytical expression of the step size ensuring stability and mean convergence is derived. In addition, the results of an experimental study demonstrating the good performance of the SR-NLMS algorithm are given. A comparison of these results with those obtained from a standard NLMS algorithm, is performed. It is shown that, within a non-stationary input context, the SR-NLMS algorithm exhibits better performance than the NLMS algorithm.
지금까지 지가나 주택가격을 추정하는데 회귀모형 기반 공간내삽법과 크리깅(Krging) 기반 공간내삽법이 많이 사용되었지만, 이들 공간내삽법의 성능을 서로 비교한 연구는 거의 없는 실정이다. 따라서 본 연구는 대구시 달서구를 사례로 지가를 추정하는데 회귀모형 기반 공간내삽법과 크리깅 기반 공간내삽법을 적용해 보고 그 정확성을 평가하였다. 회귀모형 기반 공간내삽을 위해 최소자승모형(OLS), 공간지체모형(SLM), 공간오차모형(SEM), 지리가중회귀모형(GWR)을 사용하였고, 크리깅 기반 공간내삽을 위해 단순 크리깅(SK), 정규 크리깅(OK), 일반 크리깅(UK), 공동 크리깅(CK)을 이용하였다. 먼저, 전역적 정확성 지수인 평균 제곱근 오차(RMSE), 수정된 평균 제곱근 오차(adjusted RMSE), 분산지수(COD)를 이용하여 그 정확성을 통계적으로 평가하였다. 다음으로, 3차원 잔차도와 산점도를 이용하여 그 정확성을 시각적으로 서로 비교하였다. 통계적 및 시각적 분석결과에 의하면, 공간적 의존성을 반영할 수 있는 공간회귀모형(SAR)과 크리깅 기법들 보다 공간적 이질성을 고려할 수 있는 GWR이 사례지역에서 지가를 추정하는데 상대적으로 정확한 공간내삽방법인 것으로 나타났다. 본 연구의 결과는 지가를 통해 도시의 공간구조를 분석하는 이차적 연구에 기여할 것이다.
본 연구는 금강 권역을 대상으로 일반최소자승법(OLS)과 공간지리 가중회귀모형(GWR)을 적용하여 유역 내 토지이용과 지형적 특성이 BOD, DO, TN, TP을 포함한 수질에 미치는 영향을 알아보고자 하였다. 일반적으로 OLS는 변수 간의 관계가 균일하다는 가정에 기초하고 있으며, 지역적인 변화를 고려하지 않는다는 한계가 있다. 따라서 본 연구에서는 변수 간의 관계가 지역적으로 다르게 나타나는 것을 검증하기 위해 GWR을 이용하여 분석하였다. 종속변수인 총 4개의 수질 측정 항목(BOD, DO, TN, TP)과 독립변수인 토지이용 비율(도시, 농업 및 산림지역) 및 지형(고도, 평균 경사)에 대하여 OLS와 GWR 모형을 각각 추정하고, 비교하였다. GWR 모형의 $R^2$와 회귀계수 값의 기초 통계량을 분석한 결과, 공간적으로 큰 변동성이 있는 것으로 나타났다. 즉, 토지이용과 지형이 수질에 미치는 영향이 지역에 따라 균일하지 않은(non-stationarity) 것을 보여준다. 또한 OLS와 GWR 모형의 $R^2$, AICc, Moran's I 지수를 비교하였을 때, 대부분 GWR 모형이 OLS 모형에 비하여 우수한 것으로 나타났다. 본 연구 결과는 향후 수질 및 유역 관리를 위한 토지이용 계획 수립 등의 정책적 근거로 활용될 수 있다.
본 논문에서는 비정상적인 배경 잡음 환경에서 음성향상을 위한 신호의 스펙트럼 변이 (Spectral Deviation)을 적용한 Soft Decision 기반의 잡음전력 수정 기법을 제안한다. 기존의 Soft Decision 기반의 잡음전력 추정에 있어서 잡음신호의 정상성(Stationarity)을 가정한 스무딩 파라미터를 사용하여 잡음전력을 추정하고 갱신하였지만, 잡음신호의 주파수적인 특성이 상대적으로 빠르게 변하는 비정상적인 환경에서는 강인하지 못한 단점을 가지게 된다. 본 논문에서는 신호의 스펙트럼 변이를 추정하여 정상적인 잡음 환경과 비정상적인 잡음 환경에 따라 적응적으로 잡음전력을 추정하고 갱신하여 잡음신호에 의해 오염된 음성신호를 향상시킨다. 제안된 알고리즘은 다양한 배경 잡음 환경에서 객관적인 음질측정 방법인 ITU-T P.862 perceptual evaluation of speech quality (PESQ)에 의해서 평가되었으며, 기존의 Soft Decision 기반의 음성 향상 기법과 비교하여 보다 향상된 성능을 보여주었다.
본 연구에서는 기후변화에 따른 극한 강우의 비정상성을 반영하기 위하여 GEV 분포의 3개 매개변수 중 위치매개변수를 공변량으로 적용하여, 지표면 기온(Surface air temperature, SAT) 및 이슬점 온도(Dew point temperature, DPT)을 고려한 비정상성 빈도해석이 실시된다. 부산 지점이 연구대상지점으로 선정되었으며, 5월부터 10월까지의 월 최대 일강수량을 이용하여 분석을 수행하였다. GEV 분포의 위치 매개변수를 위한 가장 적절한 공변량(기온과 이슬점 온도) 함수를 선택하기 위하여 다양한 모델을 구성하였으며, 구성된 모델 중 AIC(Akaike Information Criterion)가 가장 작은 모델을 최적 모델로 선정하였다. 분석 결과, exp(DPT)가 공변량인 비정상성 GEV 분포가 가장 적합한 것으로 나타났다. 선택된 모델을 이용하여 기후변화 시나리오에 따른 확률강우량의 영향을 분석하였으며, 부산지점의 경우 미래 이슬점 온도가 증가함에 따라 확률강우량이 증가할 가능성이 매우 높음을 살펴볼 수 있었다.
The point rainfall measurements need to be converted to the areal rainfall by means of mean areal precipitation (MAP) estimation methods. And it is not appropriate to evaluate the areal rainfall with constant drift because of the geomorphological influences to rainfall field. Non-stationarity should be applied to the estimation of the areal rainfall, therefore, to consider these effects. Kriging methods with special functional would be a suitable tool in this case. Generalized covariance Kriging method is the most developed one among different Kriging methods. From this point of view this study performs the analysis of its applicability to distributed runoff model. For these purpose, distributed rainfall was created by Thiessen and Kriging method. And distributed rainfall of each method was applied into HyGIS-GRM. The result of applying, Runoff was different in the rainfall data form. Therefore, To apply Kriging method with physical meaning is that it is the useful method as distributed rainfall-runoff model.
Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.