Acknowledgement
본 연구는 한국전자통신연구원 내부연구과제의 일환으로 수행되었음[멀티에이전트 강화학습 탐색, 통신, 학습전략 기술 연구, 22YE1210, 자율성장형 복합인공지능 원천기술 연구, 23ZS1100].
References
- L. Busoniu et al., "A Comprehensive survey of multiagent reinforcement learning," IEEE Trans. Syst. Man, Cybern. C, Appl. Rev., vol. 38, no. 2, 2008, pp. 156-172. https://doi.org/10.1109/TSMCC.2007.913919
- 유병현 외, "멀티 에이전트 강화학습 기술 동향," 전자통신동향 용어해설 분석, 제35권 제6호, 2020, pp. 137-149.
- S. Gronauer and K. Diepold, "Multi-agent deep reinforcement learning: A survey," Artif. Intell. Rev., vol. 55, no. 2, 2022, pp. 895-943. https://doi.org/10.1007/s10462-021-09996-w
- H. Nekoei et al., "Dealing with non-stationarity in decentralized cooperative multi-agent deep reinforcement learning via multi-timescale learning," arXiv preprint, CoRR, 2023, arXiv: 2302.02792.
- G. Papoudakis et al., "Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks," in Proc. Neural Inform. Process. (Virtual), 2021.
- J. Foerster et al., "Counterfactual multi-agent policy gradients," Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1, 2020.
- T. Rashid et al., "QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning," in Proc. Int. Conf. Mach. Learn., (Stockholm, Sweden), July 2018.
- P. Hernandez-Leal et al., "A survey of learning in multiagent environments: Dealing with non-stationarity," arXiv preprint, CoRR, 2016, arXiv: 1707.09183.
- M. Tan, "Multi-agent reinforcement learning: Independent vs. cooperative agents," in Proc. Int. Conf. Mach. Learn., (Amherst, MA, USA), 1993, pp. 330-337.
- V. Mnih et al., "Playing atari with deep reinforcement learning," arXiv preprint, CoRR, 2013, arXiv: 1312.5602.
- T. Chu et al., "Multi-agent deep reinforcement learning for large-scale traffic signal control," IEEE Trans. Itell. Transportation Syst., vol. 21, no. 3, 2020, pp. 1086-1095. https://doi.org/10.1109/TITS.2019.2901791
- C. Witt et al., "Is independent learning all you need in the StarCraft multi-agent challenge?," arXiv preprint, CoRR, 2020, arXiv: 2011.09533.
- V. Mnih et al., "Asynchronous methods for deep reinforcement learning," in Proc. Int. Conf. Mach. Learn., (New York, NY, USA), June 2016,
- J. Schulman et al., "Proximal policy optimization algorithms," arXiv preprint, CoRR, 2017, arXiv: 1707.06347.
- H. Nekoei et al., "Staged independent learning: Towards decentralized cooperative multi-agent reinforcement learning," in Proc. Int. Conf. Mach. Learn., (Virtual), Apr. 2022.
- L. Matignon et al., "Hysteretic q-learning: An algorithm for decentralized reinforcement learning in cooperative multi-agent teams," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., (San Diego, CA, USA), Oct. 2007, pp. 64-69.
- G. Palmer et al., "Lenient multi-agent deep reinforcement learning," in Proc. Int. Conf. Auton. Agents MultiAgent Syst., (Stockholm, Sweden), July 2018, pp. 443-451.
- J. Jiang et al., "I2Q: A fully decentralized Q-learning algorithm," in Proc. Neural Inform. Process., (New Orleans, LA, USA), Nov. 2022.
- S. Omidshafiei et al., "Deep decentralized multi-task multi-agent reinforcement learning under partial observability," in Proc. Int. Conf. Mach. Learn., (Sydney, Australia), Aug. 2017, pp. 2681-2690.
- W. Li et al., "F2A2: Flexible fully-decentralized approximate actor-critic for cooperative multi-agent reinforcement learning," arXiv preprint, CoRR, 2020, arXiv: 2004.11145.
- M. Samvelyan et al., "The starcraft multi-agent challenge," arXiv preprint, CoRR, 2019, arXiv: 1902.04043.
- G. Brockman et al., "OpenAI gym," arXiv preprint, CoRR, 2016, arXiv: 1606.01540.
- F. Christianos et al., "Shared experience actor-critic for multi-agent reinforcement learning," in Proc. Neural Inform. Process. Syst., (Vancouver, Canada), Dec. 2020, pp. 10707-10717.