• Title/Summary/Keyword: Non-splinted

Search Result 20, Processing Time 0.019 seconds

A Retrospective Study of Sintered Porous-surfaced Dental Implants in Restoring the Edentulous Posterior Mandible: Up to Eight Years of Functioning (하악 구치부에 식립한 sintered porous surfaced implants의 후향적 다기관 연구)

  • Kim, Woo-Sung;An, Kyung-Mi;Sohn, Dong-Seok;Jung, Heui-Seung;Shin, Im-Hee
    • The Journal of the Korean dental association
    • /
    • v.47 no.12
    • /
    • pp.823-829
    • /
    • 2009
  • Purpose : The aim of this study was to evaluate the survival rate of sintered porous-surfaced implants placed in the edentulous posterior mandibles, in relation to implant length and diameter, crown-to-implant ratio, and types of prostheses, for a maximum of eight years of functioning. Material and Methods : The study group consisted of 43 partially edentulous patients who visited Catholic University Hospital of Daegu and one private dental clinic. A total of 122 sintered porous-surfaced implants n $Endopore^{(R)}$ (Inn ova Life Sciences, Toronto, Ontario, Canada) -- were placed in the edentulous posterior mandibles, Two diameter sizes (4.1 mm and 5.0 mm) and four lengths (5.0 mm, 7.0 mm, 9.0 mm, and 12.0 mm) were used. One hundred and three implants were splinted and 21 implants were nonsplinted. The survival rates of the implants in relation to length, diameter, crown-to-implant ratio, and types of prostheses were investigated. Statistical data were analyzed using SPSS Win.Ver 14.0 software with the Chi-square test. Results : The survival rate of the 4.1mm diameter implants was 100% and 91.2% for the 5.0mm diameter implants. The survival rates of the implants of differing diameters were found to be statistically different (p=0.005). The survival rates of both the 5.0mm and 7.0 mm length implants were 100%. The survival rate of the 9.0mm length implants was 97.9% and for the 12.0mm length implants was 95.1%. There was no statistical difference in survival rates for the differing lengths of implants. Of the 103 prostheses that were splinted, the survival rate was 98.0%. The survival rate of splinted prostheses was higher than that of the non-splinted prostheses, but was found to be not statistically different. There were no failed cases when the crown-to-implant ratio was under 1.0. When the crown-to-implant ratio was between 1.0 and 1.5, the failure rate of the implants was 6.7%. No failure was recorded with the ratio range of 1.5 to 2.0. Relative to the crown-to-implant ratio of 1.0, the failure rates were statistically different (p=0.048). Discussion and Conclusion : The cumulative survival rate of the porous-surfaced implants placed in the edentulous posterior mandibles was 97.5%. Short porous-surfaced implants showed satisfactory results after a maximum of nine years of functioning in the edentulous posterior mandibles.

  • PDF

Effect of attachments and palatal coverage of maxillary implant overdenture on stress distribution: a finite element analysis (상악 임플란트 피개의치에서 유지장치 종류와 구개 피개 유무에 따른 응력분포에 대한 유한요소분석)

  • Park, Jong-Hee;Wang, Yuan-Kun;Lee, Jeong-Jin;Park, Yeon-Hee;Seo, Jae-Min;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effect of attachments and palatal coverage on stress distribution in maxillary implant overdenture using finite element analysis. Materials and Methods: Four maxillary overdenture 3-D models with four implants placed in the anterior region were fabricated with computer-aided design. 1) Ball-F: Non-splinted ball attachment and full palatal coverage, 2) Ball-P: Non-splinted ball attachment and U-shaped partial palatal coverage, 3) Bar-F: Splinted milled bar attachment and full palatal coverage, 4) Bar-P: Splinted milled bar attachment and U-shaped partial palatal coverage. Stress distribution analysis was performed with ANSYS workbench 14. 100 N vertical load was applied at the right first molar unilaterally and maximum stress was calculated at the implant, peri-implant bone and mucosa. Results: The use of the ball attachment showed lower maximum stress on implant and peri-implant bone than the use of the milled bar attachment. But it showed contrary tendency in the mucosa. Regardless of attachment, full palatal coverage showed lower maximum stress on implant, peri-implant bone and mucosa. Conclusion: Within the limitation of this study, ball attachment improved stress distribution on implant and peri-implant bone rather than milled bar attachment in maxillary implant overdenture. Also, full palatal coverage is more favorable in stress distribution.

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

FINITE ELEMENT ANALYSIS ON MAXILLARY MOLAR IMPLANT UNDER DIFFERENT C/R RATIO (상악 구치부 임플랜트 보철수복시 치관/치근비에 따른 응력 분포에 대한 유한 요소 분석)

  • Kim, Jin-Ho;Kim, Hyung-Seob;Choi, Dae-Gyun;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.561-573
    • /
    • 2006
  • Statement of the problem: In cases of low bone level in maxilla followed by extraction due to severe periodontitis or enlarged maxillary sinus, crown-root ratio of implant prosthesis will increase. The prognosis of these cases is not good as expected. Purpose : The purpose is to compare stress distribution due to crown-root ratio and effect of splinting between two implants in maxillary molar area under different loads Material and methods: Using ITI($4.1{\times}10$ mm) implant. two finite element models were made(model S: two parallel implants, model A: one of two is 20 degree inclined). Each model was designed in different crown-root ratio(0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it splinted or non-splinted clinical situations. After that, 300 N force was loaded to each model in four ways.(load 1 : middle of occlusal table, load 2 : middle of buccal cusp, load 3 : middle of lingual cusp, load 4 : horizontal load to middle of buccal cusp), and stress distribution was analyzed. Results: On all occasions, stress was concentrated on neck of implant near cortical bone. In the case of inclined implant, stress was increased compared with parallel implants. Under load 1, 2, 3, stress was not increased even when crown-root ratio increases, but under load 4, when crown-root ratio increases, stress also increased. And more stress was concentrated under load 1 than load 2, 3. When crown-root ratio was same, stress under load 1, 2, 3 decreased when splinting, but under load 4, stress did not really decrease. Conclusion: Under vertical load, stress distribution related to crown-root ratio did not change. But under horizontal load, stress increased as crown-root ratio increases. Under vertical load, splinting decreased stress but under horizontal load, effect of splinting was decreased as condition of implant changes for the worse such as increase of crown-root ratio, inclined implant.

Strains of abutment and bones on implant overdentures (임플란트 피개의치에서 지대주와 골의 변형률에 관한 연구)

  • Kim, Myung-Seok;Heo, Seong-Joo;Koak, Jai-Young;Kim, Sung-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.222-231
    • /
    • 2009
  • Statements of the problem: Over the past decades, conventional complete dentures were used for various patients although they have incomplete function. Overdentures using dental implants could help the improvement of denture function. Purpose: The purpose of this study was to compare the strains of abutment and bone on implant overdenture between splinted and unsplinted type of prosthesis. Additionally, the strain values of parallel placed implant model and unparallel placed implant model were compared. Material and methods: Two acrylic resin model were prepared and two implants were placed at the canine positions in each model. In the first model, two implant were placed parallel. In the second model, two implants were placed with 10 degree labiolingual divergence. Two types of abutment were connected to the fixtures alternatively. One was splint type of Hader bar, the other was unsplint type of ball abutment. Overdentures were fabricated with corresponding attachment systems and seated on abutments. Strains of abutments and labial bone simulants were measured with electric resistance strain gauges when static load from 100 N to 200 N were applied to overdentures. Results: 1. Splinted type of overdentures using bar and clip showed higher absolute strain values. But the strain was compressive and the load was shared by two implants(P<.05). 2. Unsplinted type overdentures using ball and O-ring showed low absolute strain values(P<.05). 3. Labially inclined implant showed higher tensile strain values in unsplinted type of prosthesis than in splinted type of prosthesis. Lingually inclined implant showed rather low strain values under load(P<.05). 4. Non parallel implant model showed higher absolute strain values than parallel placed implant model comprehensively(P<.05).

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.

Clinical evaluation of the removable partial dentures with implant fixed prostheses (임플란트 고정성 보철물을 이용한 가철성 국소의치의 합병증에 관한 임상적 평가)

  • Kang, Soo-Hyun;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • Purpose: The purpose of this study was to identify clinical complications in removable partial denture (RPD) with implant-supported surveyed prostheses, and to analyze the factors associated with the complications such as location of the implant, splinting adjacent prostheses, the type of retentive clasps, Kennedy classification, and opposing dentition. Materials and Methods: A retrospective clinical study was carried out for 11 patients (7 male, 4 female), mean age of 67.5, who received RPD with Implant-supported surveyed prostheses between 2000 and 2016. The mechanical complications of 11 RPDs and 37 supporting implant prostheses and the state of natural teeth and peripheral soft tissue were examined. Then the factors associated with the complications were analyzed. Results: The average of 3.4 implant-supported prostheses were used for each RPD. Complications found during the follow-up period of an average of 42.1 months were in order of dislodgement of temporary cement-retained prostheses, opposing tooth fracture/mobility, screw fracture/loosening, clasp loosening, veneer porcelain fracture, marginal bone resorption and mobility of implant, artificial tooth fracture. Complications occurred more frequently in anterior region compared to posterior region, non-splinted prostheses compared to splinted prostheses, surveyed prostheses applied by wrought wire clasp compared to other clasps, and natural dentition compared to other removable prostheses as opposing dentition. There were no significant differences in complications according to the Kennedy classification. Conclusion: All implant-assisted RPD functioned successfully throughout the follow-up. However, further clinical studies are necessary because the clinical evidences are still not enough to guarantee the satisfactory prognosis of implant-assisted RPD for long-term result.

Detorque values of abutment screws in a multiple implant-supported prosthesis (다수 임플란트 지지 보철물에서 지대주 나사의 풀림 토크값에 대한 연구)

  • Lee, Ju-Ri;Lee, Dong-Hwan;Hwang, Jae-Woong;Choi, Jung-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.280-286
    • /
    • 2010
  • Purpose: This study evaluated the detorque values of screws in a multiple implant-supported superstructure using stone casts made with 2 different impression techniques. Material and methods: A fully edentulous mandibular master model and a metal framework directly connected to four implants (Br${\aa}$nemark $System^{(R)}$; Nobel Biocare AB) with a passive fit to each other were fabricated. Six experimental stone casts (Group 1) were made with 6 non-splinted impressions on a master cast and another 6 experimental casts (Group 2) were made with 6 acrylic resin splinted impressions. The detorque values of screws ($TorqTite^{(R)}$ GoldAdapt Abutment Screw; Nobel Biocare AB) were measured twice after the metal framework was fastened onto each experimental stone cast with 20 Ncm torque. Detorque values were analyzed using the mixed model with the fixed effect of screw and reading and the random effect of model for the repeated measured data at a .05 level of ignificance. Results: The mean detorque values were 7.9 Ncm (Group 1) and 8.1 Ncm (Group 2), and the mean of minimum detorque values were 6.1 Ncm (Group 1) and 6.5 Ncm (Group 2). No statistically significant differences between 2 groups were found and no statistically significant differences among 4 screws were found for detorque values. No statistically significant differences between 2 groups were also found for minimum detorque values. Conclusion: In a multiple external hexagon implant-supported prosthesis, no significant differences between 2 groups were found for detorque values and for minimum detorque values. There seems to be no significant differences in screw joint stability between 2 stone cast groups made with 2 different impression techniques.

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Comparison of marginal bone loss between internal- and external-connection dental implants in posterior areas without periodontal or peri-implant disease

  • Kim, Dae-Hyun;Kim, Hyun Ju;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.103-113
    • /
    • 2018
  • Purpose: The purpose of this retrospective study with 4-12 years of follow-up was to compare the marginal bone loss (MBL) between external-connection (EC) and internal-connection (IC) dental implants in posterior areas without periodontal or peri-implant disease on the adjacent teeth or implants. Additional factors influencing MBL were also evaluated. Methods: This retrospective study was performed using dental records and radiographic data obtained from patients who had undergone dental implant treatment in the posterior area from March 2006 to March 2007. All the implants that were included had follow-up periods of more than 4 years after loading and satisfied the implant success criteria, without any peri-implant or periodontal disease on the adjacent implants or teeth. They were divided into 2 groups: EC and IC. Subgroup comparisons were conducted according to splinting and the use of cement in the restorations. A statistical analysis was performed using the Mann-Whitney U test for comparisons between 2 groups and the Kruskal-Wallis test for comparisons among more than 2 groups. Results: A total of 355 implants in 170 patients (206 EC and 149 IC) fulfilled the inclusion criteria and were analyzed in this study. The mean MBL was 0.47 mm and 0.15 mm in the EC and IC implants, respectively, which was a statistically significant difference (P<0.001). Comparisons according to splinting (MBL of single implants: 0.34 mm, MBL of splinted implants: 0.31 mm, P=0.676) and cement use (MBL of cemented implants: 0.27 mm, MBL of non-cemented implants: 0.35 mm, P=0.178) showed no statistically significant differences in MBL, regardless of the implant connection type. Conclusions: IC implants showed a more favorable bone response regarding MBL in posterior areas without peri-implantitis or periodontal disease.