• Title/Summary/Keyword: Non-solution method

Search Result 1,189, Processing Time 0.028 seconds

THE ITERATION METHOD OF SOLVING A TYPE OF THREE-POINT BOUNDARY VALUE PROBLEM

  • Liu, Xiping;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.475-487
    • /
    • 2009
  • This paper studies the iteration method of solving a type of second-order three-point boundary value problem with non-linear term f, which depends on the first order derivative. By using the upper and lower method, we obtain the sufficient conditions of the existence and uniqueness of solutions. Furthermore, the monotone iterative sequences generated by the method contribute to the minimum solution and the maximum solution. And the error estimate formula is also given under the condition of unique solution. We apply the solving process to a special boundary value problem, and the result is interesting.

  • PDF

Error estimation for 2-D crack analysis by utilizing an enriched natural element method

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.505-512
    • /
    • 2020
  • This paper presents an error estimation technique for 2-D crack analysis by an enriched natural element (more exactly, enriched Petrov-Galerkin NEM). A bare solution was approximated by PG-NEM using Laplace interpolation functions. Meanwhile, an accurate quasi-exact solution was obtained by a combined use of enriched PG-NEM and the global patch recovery. The Laplace interpolation functions are enriched with the near-tip singular fields, and the approximate solution obtained by enriched PG-NEM was enhanced by the global patch recovery. The quantitative error amount is measured in terms of the energy norm, and the accuracy (i.e., the effective index) of the proposed method was evaluated using the errors which obtained by FEM using a very fine mesh. The error distribution was investigated by calculating the local element-wise errors, from which it has been found that the relative high errors occurs in the vicinity of crack tip. The differences between the enriched and non-enriched PG-NEMs have been investigated from the effective index, the error distribution, and the convergence rate. From the comparison, it has been justified that the enriched PG-NEM provides much more accurate error information than the non-enriched PG-NEM.

Direct Ritz method for random seismic response for non-uniform beams

  • Lin, J.H.;Williams, F.W.;Bennett, P.N.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.285-294
    • /
    • 1994
  • Based on a fast and accurate method for the stationary random seismic response analysis for discretized structures(Lin 1992, Lin et al. 1992), a Ritz method for dealing with such responses of continuous systems in developed. This method is studied quantitatively, using cantilever shear beams for simplicity and clarity. The process can be naturally extended to deal with various boundary conditions as well as non-uniform Bernoulli-Euler beams, or even Timoshenko beams. Algorithms for both proportionally and non-proportionally damped responses are described. For all of such damping cases, it is not necessary to solve for the natural vibrations of the beams. The solution procedure is very simple, and equally efficient for a white or a non-white ground excitation spectrum. Two examples are given where various power spectral density functions, variances, covariances and second spectral moments of displacement, internal force response, and their derivatives are calculated and analyses. Some Ritz solutions are compared with "exact" CQC solutions.

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

AN ACCELERATING SCHEME OF CONVERGENCE TO SOLVE FUZZY NON-LINEAR EQUATIONS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose an accelerating scheme of convergence of numerical solutions of fuzzy non-linear equations. Numerical experiments show that the new method has significant acceleration of convergence of solutions of fuzzy non-linear equation. Three-dimensional graphical representation of fuzzy solutions is also provided as a reference of visual convergence of the solution sequence.

A research on non-interactive multi agents by ACS & Direction vector algorithm (ACS & 방향벡터 알고리즘을 이용한 비 대화형 멀티에이전트 전략에 관한 연구)

  • Kim, Hyun;Yoon, Seok-Hyun;Chung, Tae-Choong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.11-18
    • /
    • 2010
  • In this paper, We suggest new strategies on non-interactive agents applied in a prey pursuit problem of multi agent research. The structure of the prey pursuit problem by grid space(Four agent & one prey). That is allied agents captured over one prey. That problem has long been known in interactive, non-interactive of multi agent research. We trying hard to find its own solution from non-interactive agent method on not in the same original environment(circular environment). We used ACS applied Direction vector to learning and decide on a direction. Exchange of information between agents have been previously presented (an interactive agent) out of the way information exchange ratio (non-interactive agents), applied the new method. Can also solve the problem was to find a solution. This is quite distinct from the other existing multi agent studies, that doesn't apply interactive agents but independent agent to find a solution.

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD

  • Taghizadeh, N.;Mirzazadeh, M.
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.631-635
    • /
    • 2008
  • In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) $u_{tt}-au_{xx}+bu-cu^3=0 a,b,c{\in}R^+$ So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.