• Title/Summary/Keyword: Non-slip

Search Result 258, Processing Time 0.027 seconds

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).

Numerical calculations for bioconvection MHD Casson nanofluid flow: Study of Brownian motion

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • In this paper, the non-linear mathematical problem is solved via numerical scheme by utilizing shooting method. Brownian diffusion and thermophoresis along mass and heat transfer are accounted for. Non-linear expression is reduced via non-dimensional variables. The simplified ordinary differential equations are tackled by shooting technique. Behavior of distinct influential parameters is investigated graphically and analyzed for temperature and concentration profile. Our finding indicates that temperature profile is enhanced for the thermophoresis, Brownian motion coefficient, Prandtl number, Eckert number and temperature slip parameter. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained. Graphs are plotted to examine the influence of these parameters.

Design of Modified Slip-Mode Frequency Shift Islanding Detection Method for Power Quality Improvement (Slip-Mode Frequency Shift 단독운전 검출 기법의 정상상태 전력 품질 개선)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.539-547
    • /
    • 2018
  • Grid-connected inverter is required to cut off the power supplied to the grid at the islanding condition, immediately. For this reason, an islanding detection is an indispensable function for grid-connected distributed generation system. Slip-Mode frequency Shift (SMS) islanding detection method is very popular method to determine the grid state. SMS method supplies the reactive power to the load according to the grid frequency. In the islanding condition of grid, this injected reactive power pulls out the grid frequency from the allowable range, then the inverter system can detect the islanding condition of the grid. The SMS method can detect the islanding state well and does not generate any harmonics of the grid current. However, the reactive power would be generated and the power quality is reduced even though the grid is not islanding condition, but normal condition. In this paper, a modified SMS method is proposed to remove the reactive power in the normal condition. The performance of the proposed method is evaluated by 600W single phase inverter experimental results.

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System (SNCR-SCR 하이브리드 시스템의 질소산화물 제거 특성)

  • Cha, Jin Sun;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.658-663
    • /
    • 2011
  • The SNCR-SCR (selective non-catalytic reduction-selective catalytic reduction) hybrid system is an economical NOx removal system. In this study, the effect of the operating parameters of the SNCR-SCR hybrid system on NOx removal efficiency was investigated. When the SNCR reactor was operated at a temperature lower than the optimum temperature ($900{\sim}950^{\circ}C$), an additional NO removal is obtained basesd on the utilization of $NH_3$ slip. On the other hand, the SNCR reactor operated above the temperature resulted in no additional NO removal of SCR due to decomposition of $NH_3$. Therefore, the SNCR process should be operated at optimum temperature to obtain high NO removal efficiency and low $NH_3$ slip. Thus, it is important to adjust NSR (normalized stoichiometric ratio) so that $SR_{RES}$ can be maintained at an appropriate level.

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.