• Title/Summary/Keyword: Non-sintered

Search Result 160, Processing Time 0.025 seconds

Basic characteristic of non-sintered binder using by CFBC ash (순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성)

  • Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

Analysis of Non-Sintered Hwangto Replacement Rate in Structural Concrete on Ultrasonic Pulse Velocity (비소성 황토의 치환율에 따른 구조용 콘크리트의 초음파 속도 분석)

  • Kim, Won-Chang;Choi, Hee-Yong;Choi, Hyeong-Gil;Nam, Jeong-Soo;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.45-46
    • /
    • 2022
  • In this study, ultrasonic pulse velocity is compared on non-sintered hwangto concrete(NHTC) and normal concrete(NC) at ages. Strength of specimens set up 30MPa. Cement is replaced with 15 and 30% non-sintered hwangto. UPV is tested at 1, 3, 7, 28, 56, 91 days. As a result, UPV increases as the age and strength increase, but decreases as the non-sintered hwangto replacement increases. Although ultrasonic pulse velocity of NHTC was 72% lower than NC, after that, difference tends to decrease

  • PDF

Analyzing the Strength Development of Concrete with Function of Non-Sintered Hwangto Admixture Ratio at Early Ages (초기 재령에서 비소성 황토 혼입율에 따른 콘크리트의 강도 발현 분석)

  • Kim, Tae-Hyung;Kim, Won-Chang;Choi, Hyung-Gil;Choi, Hee-Yong;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.39-40
    • /
    • 2023
  • In this study, the compressive strength development was analyzed at early ages of concrete specimens admixed with non-sintered hwangto to reduce the CO2 emissions generated during cement production. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at three levels of 15, 30, and 45%, and the compressive strength were measured at 1, 3, 7, and 28 days. The results showed that the compressive strength decreases as the percentage of non-sintered hwangto increases, but the strength development rate increases, and the NHTC41-15 test specimen developed a compressive strength close to NC41 at 28 days.

  • PDF

Ultrasonic pulse velocity analysis for high- temperature mechanical properties of high strength concrete replacing non-sintered hwangto (비소성 황토를 치환한 고강도 콘크리트의 고온 역학적 특성 평가를 위한 초음파 속도 분석)

  • Hong, Kil-Dong;Lim, Gguk-Jeong;Jang, Kil-San
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.273-274
    • /
    • 2023
  • In this study, ultrasonic pulse velocity was analyzed to evaluate the high-temperature mechanical properties of concrete mixed with non-sintered hwangto. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at two levels of 15,30%. The target temperature of the specimen is set to 6 levels of 20, 100, 200, 300, 500, 700 ℃, and the heating rate is set to 1℃/min. The result showed that the amount of non-sintered hwangto incorporated into the concrete tends to results in lower compressive strength. Ultrasonic pulse velocity showed similar trends, but differed in some areas.

  • PDF

Development of Non-sintered Construction Materials for Resource Recycling of the Flotation Tailings (부선(浮選) 광미(鑛尾)의 순환자원화(循環資源化)를 위한 비소성(非燒成) 토건재료(土建材料) 개발(開發))

  • Kim, Joo-Ik;Jung, Moon-Young;Park, Jay-Hyun;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • This study was conducted to recycle flotation tailings as non-sintered construction materials considering the economic and eco-friendly treatments. The particle size distribution( median $220\;{\mu}m$) of flotation tailings from Soon-shin mine was confirmed to be larger than that(median $140\;{\mu}m$) of tailings from Sam-kwang mine. Thus we investigated the properties of non-sintered eco-brick producted with the tailings from Sam-kwang mine and non-sintered water permeable block producted with the tailings from Soon-shin mine. Compressive strength of non-sintered water permeable block which was made with less than 25 wt% of tailings from Soon-shin mine was met with products class(over 14.70 MPa) of water permeable concrete(EL 245) from KEITL. Meanwhile, the coefficient of its permeability wasn't met with the products class( over $1.0{\times}10^{-2}\;cm/sec$). The properties of non-sintered eco-brick with less than 40 wt% of tailings from Sam-kwang mine were satisfied with third class in sintered clay brick products standard(KS L 4201). The non-sintered eco-brick as a result of leaching test on heavy metals by KSLT was verified to be environmentally stabile.

Strength Characteristics of Non-Sintered Cement Mortar Utilizing Ferro-Nickel Slag as Fine Aggregate (페로니켈슬래그를 잔골재로 사용한 비소성 시멘트 모르타르의 강도 특성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • This experimental study investigates the replacement of conventional Portland cement and sand with non-sintered cement and ferro-nickel slag to formulate eco-friendly cement mortar. The examination aimed to understand the strength properties of non-sintered cement mortar using ferro-nickel slag as fine aggregate by classifying mortar production types, fine aggregates, and curing methodologies. From flexural and compressive strength tests, it was observed that non-sintered cement mortars, incorporating ferro-nickel slag as fine aggregate, exhibited superior strength when compared to both plain mortar and steam-cured non-sintered mortar. This increased strength is attributed to the influence of the particle size, density, and absorption capabilities of the ferro-nickel slag. Furthermore, X-ray Diffraction(XRD) analyses of the mortars verified the presence of MgO, a component of ferro-nickel slag, in the form of a composite oxide. This finding substantiates the consistent strength manifestation of non-sintered cement mortars utilizing ferro-nickel slag as a fine aggregate.

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

UPV Prediction Method on Compressive Strength of High Strength Concrete Mixed with Non-Sintered Hwangto at Early Age (초기 재령에서 비소성 황토 혼입 고강도 콘크리트의 압축강도 발현 예측을 위한 초음파 속도법 검토)

  • Young-Jin Nam;Won-Chang Kim;Hyeong-Gil Choi;Gyu-Yong Kim;Tae-Gyu Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2023
  • In this study, the mechanical properties of high-strength concrete according to the substitution rate of NSH(Non-sintered Hwangto) as an alternative material for cement were measured and evaluated. Through UPV(Ultrasonic pulse velocity) analysis, the compressive strength prediction equation was proposed, and the substitution rate of NSH was set at 15 % and 30 %. The evaluation items were compressive strength and UPV, and the curing period was set to 24 hours. In compressive strength and UPV, as the NSH substitution rate increased, lower strength and lower UPV were shown. In addition, the correlation number(R2 ) between compressive strength and UPV was 0.99 for NC(Normal Concrete), 0.97 for NSHC(Non-sintered Hwangto Concrete)33-15, and 0.94 for NSHC33-30.

Hydration and Insulation Characteristics of a Ground Granulated Blast Furnace Slag Based Non-Sintered Cement Using Circulating Fluidized Bed Combustion Ash as a Activator (순환유동층 애시를 자극제로 사용한 고로슬래그 미분말 기반 비소성 시멘트의 수화 및 단열 특성)

  • Lee, Seung-Heun;Lee, Gang-Hyuk;Yoo, Dong-Woo;Ha, Ju-Hyung;Cho, Yun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2015
  • As people have more interest in environment-friendly structures recently, many researchers are actively researching non-sintered cement in Korea and other countries. Non-sintered cement shows various characteristics of its reaction products and hardeners, depending on the kind of alkali activators. Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind of industrial byproduct, as a stimulant, and investigated its hardening characteristics and hydration, depending on the rate of circulating fluidized bed combustion ash. Besides, this study investigated its insulation property according to the weight lightening of non-sintered cement. As a result, ettringite and C-S-H were mainly formed in the hydration, and it was possible to manufacture a non-sintered cement hardener over 50 MPa. Lastly, it was possible to manufacture a non-sintered cement hardener in a thermal conductivity level of $0.127W/m{\cdot}K$ when the compressive strength was 10 MPa for weight lightening.

Physical Properties of Non-sintered Cement Mortar with Heat Treatment after Steam Curing (비소성 시멘트 모르타르의 증기양생 후 열처리에 따른 물리적 특성)

  • Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • This study aims to develop non-sintered cement that can replace the Portland cement by utilizing industrial by-products. As a suggestion, the physical properties of non-sintered cement mortar depending on the curing method were investigated with ground granulated blast furnace slag, class C fly ash, and class F fly ash. As a result of the study, it was found that the strength performance and absorption rate were improved through the heat treatment process after steam curing. It was confirmed through crystal phase analysis that the hydration was accelerated after heat treatment, and the bonding material formed a dense internal structure.